-
Cochrane McCracken posted an update 6 months, 3 weeks ago
The flow cytometry data indicated that a decreased number of CD4+ and CD8+ T cells in the peripheral blood of mice with EAE without affecting the number of T regulatory cells (CD4 + CD25+ forkhead box protein 3+). Finally, it seems that maraviroc is well-tolerated, and targeting CCR5 could open up a new horizon in the treatment of MS. V.Communication is a core component of effective healthcare that impacts many patient and doctor outcomes, yet is complex and challenging to both analyse and teach. Human-based coding and audit systems are time-intensive and costly; thus, there is considerable interest in the application of artificial intelligence to this topic, through machine learning using both supervised and unsupervised learning algorithms. In this article we introduce health communication, its importance for patient and health professional outcomes, and the need for rigorous empirical data to support this field. We then discuss historical interaction coding systems and recent developments in applying artificial intelligence (AI) to automate such coding in the health setting. Finally, we discuss available evidence for the reliability and validity of AI coding, application of AI in training and audit of communication, as well as limitations and future directions in this field. In summary, recent advances in machine learning have allowed accurate textual transcription, and analysis of prosody, pauses, energy, intonation, emotion and communication style. Studies have established moderate to good reliability of machine learning algorithms, comparable with human coding (or better), and have identified some expected and unexpected associations between communication variables and patient satisfaction. Finally, application of artificial intelligence to communication skills training has been attempted, to provide audit and feedback, and through the use of avatars. This looks promising to provide confidential and easily accessible training, but may be best used as an adjunct to human-based training. Encapsulation of small water soluble molecules is important in a large variety of applications, ranging from medical substance releasing implants in the field of medicine over release of catalytically active substances in the field of chemical processing to anti-corrosion agents in industry. In this work polylactic acid (PLA) based hollow-structured microchamber (MC) arrays are fabricated via one-step dip coating of a silicone rubber stamp into PLA solution. These PLA MCs are able to retain small water soluble molecules (Rhodamine B) stably entrapped within aqueous environments. It is shown, that degradation of PLA MCs strongly depends on environmental conditions like surrounding pH and follows first order degradation kinetics. This pH dependent PLA MC degradation can be utilized to control the release kinetics of encapsulated cargo. The parcellation of the human cortex into meaningful anatomical units is a common step of various neuroimaging studies. There have been multiple successful efforts to process magnetic resonance (MR) brain images automatically and identify specific anatomical regions, following atlases defined from cortical landmarks. Those definitions usually rely first on a high-quality brain surface reconstruction. On the other hand, when high accuracy is not a requirement, simpler methods based on warping a probabilistic atlas have been widely adopted. Here, we develop a cortical parcellation method for MR brain images based on Convolutional Neural Networks (ConvNets), a machine-learning method, with the goal of automatically transferring the knowledge obtained from surface analyses onto something directly applicable on simpler volume data. We train a ConvNet on a large (thousand) set of cortical ribbons of multiple MRI cohorts, to reproduce parcellations obtained from a surface method, in this case FreeSurfer. Further, to make the model applicable in a broader context, we force the model to generalize to unseen segmentations. The model is evaluated on unseen data of unseen cohorts. We characterize the behavior of the model during learning, and quantify its reliance on the dataset itself, which tends to give support for the necessity of large training sets, augmentation, and multiple contrasts. Overall, ConvNets can provide an efficient way to parcel MRI images, following the guidance established within more complex methods, quickly and accurately. The trained model is embedded within a open-source parcellation tool available at https//github.com/bthyreau/parcelcortex. V.We proposed a novel efficient method for 3D left ventricle (LV) segmentation on echocardiography, which is important for cardiac disease diagnosis. The proposed method effectively overcame the 3D echocardiography’s challenges high dimensional data, complex anatomical environments, and limited annotation data. First, we proposed a deep atlas network, which integrated LV atlas into the deep learning framework to address the 3D LV segmentation problem on echocardiography for the first time, and improved the performance based on limited annotation data. Second, we proposed a novel information consistency constraint to enhance the model’s performance from different levels simultaneously, and finally achieved effective optimization for 3D LV segmentation on complex anatomical environments. Finally, the proposed method was optimized in an end-to-end back propagation manner and it achieved high inference efficiency even with high dimensional data, which satisfies the efficiency requirement of clinical practice. The experiments proved that the proposed method achieved better segmentation results and a higher inference speed compared with state-of-the-art methods. The mean surface distance, mean hausdorff surface distance, and mean dice index were 1.52 mm, 5.6 mm and 0.97 respectively. What’s more, the method is efficient and its inference time is 0.02s. The experimental results proved that the proposed method has a potential clinical application for 3D LV segmentation on echocardiography. Deep learning based methods have improved the estimation of tissue microstructure from diffusion magnetic resonance imaging (dMRI) scans acquired with a reduced number of diffusion gradients. These methods learn the mapping from diffusion signals in a voxel or patch to tissue microstructure measures. selleck chemical In particular, it is beneficial to exploit the sparsity of diffusion signals jointly in the spatial and angular domains, and the deep network can be designed by unfolding iterative processes that adaptively incorporate historical information for sparse reconstruction. However, the number of network parameters is huge in such a network design, which could increase the difficulty of network training and limit the estimation performance. In addition, existing deep learning based approaches to tissue microstructure estimation do not provide the important information about the uncertainty of estimates. In this work, we continue the exploration of tissue microstructure estimation using a deep network and seek to address these limitations.