-
McCracken Mcdaniel posted an update 6 months, 3 weeks ago
Working memory (WM) deficits are key in attention deficit hyperactivity disorder (ADHD). Nevertheless, WM is not universally impaired in ADHD. Additionally, the neural basis for WM deficits in ADHD has not been conclusively established, with regions including the prefrontal cortex, cerebellum, and caudate being implicated. These contradictions may be related to conceptualizations of WM capacity, such as load (amount of information) versus operational-complexity (maintenance-recall or manipulation). For instance, relative to neurotypical (NT) individuals, complex WM operations could be impaired in ADHD, while simpler operations are spared. Alternatively, all operations may be impaired at higher loads. Here, we compared the impact of these two components of WM capacity load and operational-complexity, between ADHD and NT, behaviorally and neurally. We hypothesized that the impact of WM load would be greater in ADHD, and the neural activation would be altered. Participants (age-range 12-23 years; 50 ADHD (18 females); 82 NT (41 females)) recalled three or four objects (load) in forward or backward order (operational-complexity) during functional magnetic resonance imaging scanning. The effects of diagnosis and task were compared on performance and neural engagement. Behaviorally, we found significant interactions between diagnosis and load, and between diagnosis, load, and complexity. Neurally, we found an interaction between diagnosis and load in the right striatum, and between diagnosis and complexity in the right cerebellum and left occipital gyrus. The ADHD group displayed hypo-activation compared to NT group during higher load and greater complexity. This informs mechanisms of functional problems related to WM in adolescents and young adults with ADHD (e.g., academic performance) and remedial interventions (e.g., WM-training).Sickle cell disease (SCD) is an inherited hemoglobinopathy that causes organ dysfunction, including cerebral vasculopathy and neurological complications. Hippocampal segmentation with newer and advanced 7 Tesla (7T) MRI protocols has revealed atrophy in specific subregions in other neurodegenerative and neuroinflammatory diseases, however, there is limited evidence of hippocampal involvement in SCD. Thus, we explored whether SCD may be also associated with abnormalities in hippocampal subregions. We conducted 7T MRI imaging in individuals with SCD, including the HbSS, HbSC and HbS/beta thalassemia genotypes (n = 53), and healthy race and age-matched controls (n = 47), using a customized head coil. Both T1- and T2-weighted images were used for automatic segmentation of the hippocampal subfields. Individuals with SCD had, on average, significantly smaller volume of the region including the Dentate Gyrus and Cornu Ammonis (CA) 2 and 3 as compared to the control group. Other hippocampal subregions also showed a trend towards smaller volumes in the SCD group. These findings support and extend previous reports of reduced volume in the temporal lobe in SCD patients. Further studies are necessary to investigate the mechanisms that lead to structural changes in the hippocampus subfields and their relationship with cognitive performance in SCD patients.Functional neurological disorder (FND) was of great interest to early clinical neuroscience leaders. During the 20th century, neurology and psychiatry grew apart – leaving FND a borderland condition. Fortunately, a renaissance has occurred in the last two decades, fostered by increased recognition that FND is prevalent and diagnosed using “rule-in” examination signs. The parallel use of scientific tools to bridge brain structure – function relationships has helped refine an integrated biopsychosocial framework through which to conceptualize FND. In particular, a growing number of quality neuroimaging studies using a variety of methodologies have shed light on the emerging pathophysiology of FND. selleck products This renewed scientific interest has occurred in parallel with enhanced interdisciplinary collaborations, as illustrated by new care models combining psychological and physical therapies and the creation of a new multidisciplinary FND society supporting knowledge dissemination in the field. Within this context, this article summarizes the output of the first International FND Neuroimaging Workgroup meeting, held virtually, on June 17th, 2020 to appraise the state of neuroimaging research in the field and to catalyze large-scale collaborations. We first briefly summarize neural circuit models of FND, and then detail the research approaches used to date in FND within core content areas cohort characterization; control group considerations; task-based functional neuroimaging; resting-state networks; structural neuroimaging; biomarkers of symptom severity and risk of illness; and predictors of treatment response and prognosis. Lastly, we outline a neuroimaging-focused research agenda to elucidate the pathophysiology of FND and aid the development of novel biologically and psychologically-informed treatments.Aldehydes are toxic carbonyl compounds that are identified in various matrices surrounding us. For instance, aldehydes could be formed during the cooking and frying of foods which affects the food quality and safety. Derivatization is a must for the determination of aldehydes as they lack intrinsic chromophoric groups. 2,4-Dinitrophenyl hydrazine (DNPH) is the most used derivatizing reagent for aldehydes and the formed hydrazones could be determined by either HPLC-UV or LC-MS. However, UV detection is non-sensitive, and the MS equipment is expensive and not widely available. Thus, herein we report a smart chemiluminescence (CL) detection method for the DNPH aldehydes derivatives. These derivatives are supposed to possess photosensitization ability due to the presence of strong chromophoric structures; nitrobenzene and phenyl hydrazone. Upon their UV irradiation, singlet oxygen is found to be produced which then converts the DNPH-aldehyde derivative into hydroperoxide. Next, the hydroperoxide reacts with luminthe analysis of aldehydes in oil samples using the proposed method perfectly matched those obtained by a reference LC-MS method.