-
Mathews Key posted an update 7 months ago
Gnotobiotic animals are a powerful tool for the study of controls on microbiome structure and function. Presented here is a protocol for the establishment and maintenance of gnotobiotic American cockroaches (Periplaneta americana). This approach includes built-in sterility checks for ongoing quality control. Gnotobiotic insects are defined here as cockroaches that still contain their vertically transmitted endosymbiont (Blattabacterium) but lack other microbes that normally reside on their surface and in their digestive tract. For this protocol, egg cases (oothecae) are removed from a (nonsterile) stock colony and surface sterilized. Once collected and sterilized, the oothecae are incubated at 30 °C for approximately 4-6 weeks on brain-heart infusion (BHI) agar until they hatch or are removed due to contamination. Hatched nymphs are transferred to an Erlenmeyer flask containing a BHI floor, sterile water, and sterile rat food. To ensure that the nymphs are not housing microbes that are unable to grow on BHI in the given conditions, an additional quality control measure uses restriction fragment-length polymorphism (RFLP) to test for nonendosymbiotic microbes. Gnotobiotic nymphs generated using this approach can be inoculated with simple or complex microbial communities and used as a tool in gut microbiome studies.Distilling and reporting large datasets, such as whole genome or transcriptome data, is often a daunting task. One way to break down results is to focus on one or more gene families that are significant to the organism and study. In this protocol, we outline bioinformatic steps to generate a phylogeny and to quantify the expression of genes of interest. Phylogenetic trees can give insight into how genes are evolving within and between species as well as reveal orthology. These results can be enhanced using RNA-seq data to compare the expression of these genes in different individuals or tissues. Studies of molecular evolution and expression can reveal modes of evolution and conservation of gene function between species. The characterization of a gene family can serve as a springboard for future studies and can highlight an important gene family in a new genome or transcriptome paper.Gas Chromatography – Mass Spectrometry (GC-MS) is a frequently used technique for the analysis of numerous analytes of forensic interest, including controlled substances, ignitable liquids, and explosives. GC-MS can be coupled with Solid-Phase Microextraction (SPME), in which a fiber with a sorptive coating is placed into the headspace above a sample or immersed in a liquid sample. Analytes are sorbed onto the fiber which is then placed inside the heated GC inlet for desorption. Total Vaporization Solid-Phase Microextraction (TV-SPME) utilizes the same technique as immersion SPME but immerses the fiber into a completely vaporized sample extract. This complete vaporization results in a partition between only the vapor phase and the SPME fiber without interference from a liquid phase or any insoluble materials. Depending upon the boiling point of the solvent used, TV-SPME allows for large sample volumes (e.g., up to hundreds of microliters). On-fiber derivatization may also be performed using TV-SPME. TV-SPME has been used to analyze drugs and their metabolites in hair, urine, and saliva. This simple technique has also been applied to street drugs, lipids, fuel samples, post-blast explosive residues, and pollutants in water. This paper highlights the use of TV-SPME to identify illegal adulterants in very small samples (microliter quantities) of alcoholic beverages. Both gamma-hydroxybutyrate (GHB) and gamma-butyrolactone (GBL) were identified at levels that would be found in spiked drinks. Derivatization by a trimethylsilyl agent allowed for conversion of the aqueous matrix and GHB into their TMS derivatives. Overall, TV-SPME is quick, easy, and requires no sample preparation aside from placing the sample into a headspace vial.We provide a protocol to establish a massive pontine hemorrhage model in a rat. Rats weighing about 250 grams were used in this study. One hundred microliters of autologous blood was taken from the tail vein and stereotaxically injected into the pons. The injection process was divided into 2 steps First, 10 µL of blood was injected into a specific location, anteroposterior position (AP) -9.0 mm; lateral (Lat) 0 mm; vertical (Vert) -9.2 mm, followed by a second injection of the residual blood located at AP -9.0 mm; Lat 0 mm; Vert -9.0 mm with a 20-minute interval. The balance beam test, limb placement test, and the modified Voestch neuroscore were used to evaluate neurological function. Magnetic Resonance Imaging (MRI) was used to assess the volume of hemorrhage in vivo. The symptoms of this model were in line with patients with massive pontine hemorrhage.Motor tics are sudden, rapid, recurrent movements that are the key symptoms of Tourette syndrome and other tic disorders. The pathophysiology of tic generation is associated with abnormal inhibition of the basal ganglia, particularly its primary input structure, the striatum. In animal models of both rodents and non-human primates, local application of GABAA antagonists, such as bicuculline and picrotoxin, into the motor parts of the striatum induces local disinhibition resulting in the expression of motor tics. Here, we present acute and chronic models of motor tics in rats. check details In the acute model, bicuculline microinjections through a cannula implanted in the dorsal striatum elicit the expression of tics lasting for short time periods of up to an hour. The chronic model is an alternative enabling the extension of tic expression to periods of several days or even weeks, utilizing continuous infusion of bicuculline via a sub-cutaneous mini-osmotic pump. The models enable the study of the behavioral and neural mechanisms of tic generation throughout the cortico-basal ganglia pathway. The models support the implantation of additional recording and stimulation devices in addition to the injection cannulas, thus allowing for a wide variety of usages such as electrical and optical stimulation and electrophysiological recordings. Each method has different advantages and shortcomings the acute model enables the comparison of the kinematic properties of movement and the corresponding electrophysiological changes before, during and after tic expression and the effects of short-term modulators on tic expression. This acute model is simple to establish; however, it is limited to a short period of time. The chronic model, while more complex, makes feasible the study of tic dynamics and behavioral effects on tic expression over prolonged periods. Thus, the type of empirical query drives the choice between these two complementary models of tic expression.