-
Kok Bass posted an update 6 months, 3 weeks ago
briefly discussed.Childhood abuse (CA) is a prevalent global health concern, increasing the risk of negative mental health outcomes later in life. In the literature, CA is commonly defined as physical, sexual, and emotional abuse, as well as neglect. Several mental disorders have been associated with CA, including depression, bipolar disorder, schizophrenia, and post-traumatic stress disorder, along with an increased risk of suicide. It is thought that traumatic life events occurring during childhood and adolescence may have a significant impact on essential brain functions, which may persist throughout adulthood. check details The interaction between the brain and the external environment can be mediated by epigenetic alterations in gene expression, and there is a growing body of evidence to show that such changes occur as a function of CA. Disruptions in the HPA axis, myelination, plasticity, and signaling have been identified in individuals with a history of CA. Understanding the molecular impact of CA on the brain is essential for the development of treatment and prevention measures. In this review, we will summarize studies that highlight the molecular changes associated with CA in the human brain, along with supporting evidence from peripheral studies and animal models. We will also discuss some of the limitations surrounding the study of CA and propose extracellular vesicles as a promising future approach in the field.Mechanical loading contributes to bone development, growth, and metabolism. However, the mechanisms underlying long bone mineralization via changes in loading during the growth period are unclear. The aim of the present study was to investigate the regulatory mechanisms underlying endochondral ossification and endosteal mineralization by developing an ex vivo organ culture model with cyclic axial mechanical loads. The metacarpal bones of 3-week-old C57BL/6 mice were exposed to mechanical loading (0, 7.8, and 78 mN) for 1 h/day for 4 days. Histomorphometry revealed that axial mechanical loading regulated the thickness of the calcified zone in the growth plate and endosteal mineralization in the diaphysis in a load-dependent manner. Mechanical loading also resulted in load-dependent upregulation of endochondral ossification and bone mineralization-related genes, including bone morphogenetic protein 2 (Bmp2). Recombinant human BMP-2 administration caused similar changes in tissue structures. Conversely, inhibiti loading mediated through activation of the BMP-Smad pathway.
To compare high-resolution (HR) and conventional (C) settings of high-spatial-resolution computed tomography (CT) for software volumetry of ground-glass nodules (GGNs) in phantoms and patients.
We placed -800 and -630 HU spherical GGN-mimic nodules in 28 different positions in phantoms and scanned them individually. Additionally, 60 GGNs in 45 patients were assessed retrospectively. Images were reconstructed using the HR-setting (matrix size, 1024; slice thickness, 0.25 mm) and C-setting (matrix size, 512; slice thickness, 0.5 mm). We measured the GGN volume and mass using software. In the phantom study, the absolute percentage error (APE) was calculated as the absolute difference between Vernier caliper measurement-based and software-based volumes. In patients, we measured the density (mean, maximum, and minimum) and classified GGNs into low- and high-attenuation GGNs.
In images of the -800 HU, but not -630 HU, phantom nodules, the volumes and masses differed significantly between the two settings (both p < 0.01). The APE was significantly lower in the HR-setting than in the C-setting (p < 0.01). In patients, volumes did not differ significantly between settings (p = 0.59). Although the mean attenuation was not significantly different, the maximum and minimum values were significantly increased and decreased, respectively, in the HR-setting (both p < 0.01). The volumes of both low-attenuation and high-attenuation GGNs were not significantly different between settings (p = 0.78 and 0.39, respectively).
The HR-setting might yield a more accurate volume for phantom GGN of -800 HU and influence the detection of maximum and minimum CT attenuation.
The HR-setting might yield a more accurate volume for phantom GGN of -800 HU and influence the detection of maximum and minimum CT attenuation.Esophageal pathologies encountered on fluoroscopic examination may pose a diagnostic challenge to the interpreting Radiologist. Understanding the varied imaging appearances of esophageal pathology requires a thorough understanding of barium esophagography. This article reviews the various fluoroscopic imaging findings of different esophageal pathologies by describing an approach to image interpretation centered on dots, lines, contours, and ends. By utilizing this approach, the Radiologist will be better positioned to reconcile seemingly disparate pathologies into a cogent and succinct differential diagnosis.Wearable near-eye displays for virtual and augmented reality (VR/AR) have seen enormous growth in recent years. While researchers are exploiting a plethora of techniques to create life-like three-dimensional (3D) objects, there is a lack of awareness of the role of human perception in guiding the hardware development. An ultimate VR/AR headset must integrate the display, sensors, and processors in a compact enclosure that people can comfortably wear for a long time while allowing a superior immersion experience and user-friendly human-computer interaction. Compared with other 3D displays, the holographic display has unique advantages in providing natural depth cues and correcting eye aberrations. Therefore, it holds great promise to be the enabling technology for next-generation VR/AR devices. In this review, we survey the recent progress in holographic near-eye displays from the human-centric perspective..Hematopoietic stem and progenitor cell (HSPC) lentiviral gene therapy is a promising strategy toward a lifelong cure for hemophilia A (HA). The primary risks associated with this approach center on the requirement for pre-transplantation conditioning necessary to make space for, and provide immune suppression against, stem cells and blood coagulation factor VIII, respectively. Traditional conditioning agents utilize genotoxic mechanisms of action, such as DNA alkylation, that increase risk of sterility, infection, and developing secondary malignancies. In the current study, we describe a non-genotoxic conditioning protocol using an immunotoxin targeting CD117 (c-kit) to achieve endogenous hematopoietic stem cell depletion and a cocktail of monoclonal antibodies to provide transient immune suppression against the transgene product in a murine HA gene therapy model. This strategy provides high-level engraftment of hematopoietic stem cells genetically modified ex vivo using recombinant lentiviral vector (LV) encoding a bioengineered high-expression factor VIII variant, termed ET3.