-
Goldberg Kemp posted an update 6 months, 2 weeks ago
Congenital cystic adenomatoid malformation (CCAM) is the most common congenital pulmonary anomaly with unknown etiology. Here, single-cell RNA sequencing (scRNA-seq) was used to map its cellular landscape and identify the underlying cellular and molecular events related to CCAM.
This study involved a 4.25 year old patient with grade Ⅱ-Ⅲ CCAM at the Children’s Hospital of Fudan University. Samples of lesioned and non-lesioned areas were collected during surgery for scRNA-seq.
In total, 19,904cells were obtained with median UMI counts of 7032 per cell and 1995 median genes per cell. In terms of lesioned and non-lesioned areas, epithelial cells accounted for 27.23% and 17.85%, respectively, while mesenchymal cells accounted for 2.67% and 16.06%, respectively (P<0.0001). Further clustering of epithelial cells revealed that the fractions of alveolar type 1cells (AT1, N 23.65%; L 49.81%), AT2(N 2.02%; L 5.26%), club-1(N 9.02%; L 17.57%), club-3(N 1.18%; L 4.15%), and basal cells (N 0.34%; L 2.93%) were increased in lesioned samples (P<0.0001). Selleck Torin 1 Pseudotime trajectory analysis showed tracks of club-1/basal cells→AT2→club-3→AT1 and club-1,2/basal→AT2. Mast cells (N 0.63%; L 2.48%) were also increased in lesioned samples and interactions of CD44 with HBEGF and FGFR2 were detected between mast and epithelial cells.
AT1, AT2, club, and basal cells were increased in CCAM patients, and newly defined club-1/3 and basal cells might be the origin of proliferating AT1 and AT2 cells. Increased mast cells might promote epithelial cell proliferation through interactions of CD44 with HBEGF and FGFR2.
AT1, AT2, club, and basal cells were increased in CCAM patients, and newly defined club-1/3 and basal cells might be the origin of proliferating AT1 and AT2 cells. Increased mast cells might promote epithelial cell proliferation through interactions of CD44 with HBEGF and FGFR2.Vascular calcification (VC) is a major risk factor for increasing cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD). Indoxyl sulfate (IS), a representative uremic toxin, is closely associated with VC in CKD patients. Matrix Gla protein (MGP) plays pivotal role in VC as a calcification inhibitor. The aim of this work was to explore whether MGP was involved in IS-induced VC. Here, we demonstrated the role of MGP in the IS-induced osteogenic differentiation of human aortic smooth muscle cells (HASMCs). The methods included Von Kossa staining, immunohistochemistry, Alizarin Red staining, quantitative real-time PCR and western blotting. MGP was decreased in calcified arteries both in CKD patients and rats. In vitro, IS suppressed MGP expression in HASMCs by activating ROS/NF-κB signaling in parallel with osteogenic differentiation, which was mitigated by inhibiting ROS and NF-κB with diphenyleneiodonium and Bay11-7082. Further investigation showed that IS induced NF-κB-responsive microRNA (miR)-155-5p mediating MGP downregulation. Overexpression of miR-155-5p with mimics aggravated IS-induced MGP reduction and osteogenic differentiation. In contrast, these conditions were diminished by silencing miR-155-5p. We demonstrate that IS promotes the HASMCs phenotype switch by suppressing MGP expression via ROS/NF-κB/miR-155-5p signaling and provide a new insight for the pathogenesis of IS-induced VC.Efficacious oral delivery of therapeutic proteins remains challenging and nanoparticulate approaches are gaining interest for enhancing their permeability. In this study, we explore the ability for three comparably sized nanocarriers, with diverse physicochemical properties , to successfully facilitate epithelial uptake of a model protein, ovalbumin (OVA). We report the effect of nanoparticle surface chemistry and nanostructure on protein release, cell toxicity and the uptake mechanism in a Madin Darby Canine Kidney (MDCK) cell model of the intestinal epithelium. All nanocarriers exhibited bi-phasic OVA release kinetics with sustained and incomplete release after 4 days, and more pronounced release from MSNP than either polymeric nanocarriers. CSNP and MSNP displayed the highest cellular uptake, however CSNP was prone to significant dose-dependent toxicity attributed to the cationic surface charge. Approximately 25% of MSNP uptake was governed by a clathrin-independent endocytic mechanism, while CSNP and PLGA-NP uptake was not controlled via any endocytic mechanisms investigated herein. Furthermore, endosomal localisation was observed for CSNP and MSNP, but not for PLGA-NP. These findings may assist in the optimal choice and engineering of nanocarriers for specific intestinal permeation enhancement for oral protein delivery.Curcumin (CUR) has attracted wide research interests due to its abundant bioactivities and potential advantages in cancer treatment. But the poor water solubility, instability, and quick metabolization and elimination after oral administration severely restrict the efficacy and further clinical application of CUR. Derivation is an approach often used to improve the druggability of active ingredients, so the study aim to prepare a CUR derivate with better stability, satisfactory pharmacokinetics, and inherent self-assembled ability in contrast with CUR. The derivate was designed and evaluated in vitro and in vivo. Vitamin E (VE) was used to perform the esterification reaction with CUR, and the cytotoxicity of derivative CUR-VE ester on MCF-7 tumor cells was similar to CUR. Besides the better stability in simulated gastric and intestinal fluid, plasma and liver homogenate, the self-assembly CUR-VE nanoparticles were fabricated by feasible and controllable nanoprecipitation method. The Transmission Electron Micr summary, the study provides a convenient way to fabricate the self-assembled CUR-VE NPs qualified with high drug loading, satisfactory stability and desired pharmacokinetics. CUR-VE has the potent advantage to be an ideal substitute for CUR in the future of healthcare and clinical application.
Previously we identified four Tocilizumab mimotopes and antibodies induced by these mimotopes could bind to IL-6R (interleukin-6 receptor) and regulate the downstream signaling pathways. On the basis of obtained research data, we sought to investigate whether the therapeutic strategies by Tocilizumab mimotope vaccination could be effective in the renal fibrosis model and show the desired activity by inhibiting IL-6 signaling in current study.
We immunized the mice with the Tocilizumab mimotope and then performed the unilateral ureteric obstruction (UUO) surgery. Masson-trichrome staining and immunohistochemistry were performed to evaluate the renal fibrosis. The activations and differentiations of F4/80+ cells in the spleens and kidneys were detected by flow cytometry, immunohistochemistry and immunofluorescence. Signaling pathways involved IL-6, pro-fibrotic and ferroptosis were analyzed by immunoblot assay. The free iron and lipid oxidation end product were performed by Prussian blue staining and immunohistochemistry.