-
Slot Meier posted an update 6 months, 1 week ago
The proposed method significantly improves the quality of waveforms compared to the input CHROM signals, with the mean absolute error of AVNN (the average of all normal-to-normal intervals) reduced by 41.19%, 40.45%, 41.63%, and the mean absolute error of SDNN (the standard deviation of all NN intervals) reduced by 37.53%, 44.29%, 58.41%, in the cross-database test on the UBFC-RPPG, PURE, and MAHNOB-HCI databases, respectively. This framework can be easily integrated with other existing rPPG methods to further improve the quality of waveforms, thereby obtaining more reliable IBI features and extending the application scope of rPPG techniques.The Human Cell Atlas (HCA) is a large project that aims to identify all cell types in the human body. The dimension reduction and clustering for identification of cell types from single-cell RNA-sequencing (scRNA-seq) data have become foundational approaches to HCA. The major challenges of current computational analyses are of poor performance on large scale data and sensitive to initial data. We present a new ensemble framework called Adaptive Slice KNNs (scASK) to address the challenges for analyzing scRNA-seq data with high dimensionality. scASK consists of three innovational modules, called DAS (Data Adaptive Slicing), MCS (Meta Classifiers Selecting) and EMS (Ensemble Mode Switching), respectively, which facilitate scASK to approximate a bias-variance tradeoff beyond classification. Thirteen real scRNA-seq datasets are used to evaluate the performance of scASK. Compared with five popular classification algorithms, our experimental results indicate that scASK achieves the best accuracy and robustness among all competing methods. In conclusion, adaptive slicing is an effective structural reduction procedure, and meanwhile scASK provides novel and robust ensemble framework especially for classifying cell types based on scRNA-seq data. scASK is now publically available at https//github.com/liubo2358/scASKcmd.The traditional differential diagnosis of membranous nephropathy (MN) mainly relies on clinical symptoms, serological examination and optical renal biopsy. However, there is a probability of false positives in the optical inspection results, and it is unable to detect the change of biochemical components, which poses an obstacle to pathogenic mechanism analysis. Microscopic hyperspectral imaging can reveal detailed component information of immune complexes, but the high dimensionality of microscopic hyperspectral image brings difficulties and challenges to image processing and disease diagnosis. In this paper, a novel classification framework, including spatial-spectral density peaks-based discriminant analysis (SSDP), is proposed for intelligent diagnosis of MN using a microscopic hyperspectral pathological dataset. SSDP constructs a set of graphs describing intrinsic structure of MHSI in both spatial and spectral domains by employing density peak clustering. In the process of graph embedding, low-dimensional features with important diagnostic information in the immune complex are obtained by compacting the spatial-spectral local intra-class pixels while separating the spectral inter-class pixels. For the MN recognition task, a support vector machine (SVM) is used to classify pixels in the low-dimensional space. Experimental validation data employ two types of MN that are difficult to distinguish with optical microscope, including primary MN and hepatitis B virus-associated MN. Experimental results show that the proposed SSDP achieves a sensitivity of 99.36%, which has potential clinical value for automatic diagnosis of MN.Obstructive Sleep Apnea (OSA) is a highly prevalent but inconspicuous disease that seriously jeopardizes the health of human beings. click here Polysomnography (PSG), the gold standard of detecting OSA, requires multiple specialized sensors for signal collection, hence patients have to physically visit hospitals and bear the costly treatment for a single detection. Recently, many single-sensor alternatives have been proposed to improve the cost efficiency and convenience. Among these methods, solutions based on RR-interval (i.e., the interval between two consecutive pulses) signals reach a satisfactory balance among comfort, portability and detection accuracy. In this paper, we advance RR-interval based OSA detection by considering its real-world practicality from energy perspectives. As photoplethysmogram (PPG) pulse sensors are commonly equipped on smart wrist-worn wearable devices (e.g., smart watches and wristbands), the energy efficiency of the detection model is crucial to fully support an overnight observation on patients. This creates challenges as the PPG sensors are unable to keep collecting continuous signals due to the limited battery capacity on smart wrist-worn devices. Therefore, we propose a novel Frequency Extraction Network (FENet), which can extract features from different frequency bands of the input RR-interval signals and generate continuous detection results with downsampled, discontinuous RR-interval signals. With the help of the one-to-multiple structure, FENet requires only one-third of the operation time of the PPG sensor, thus sharply cutting down the energy consumption and enabling overnight diagnosis. Experimental results on real OSA datasets reveal the state-of-the-art performance of FENet.Real-time in situ image analytics impose stringent latency requirements on intelligent neural network inference operations. While conventional software-based implementations on the graphic processing unit (GPU)-accelerated platforms are flexible and have achieved very high inference throughput, they are not suitable for latency-sensitive applications where real-time feedback is needed. Here, we demonstrate that high-performance reconfigurable computing platforms based on field-programmable gate array (FPGA) processing can successfully bridge the gap between low-level hardware processing and high-level intelligent image analytics algorithm deployment within a unified system. The proposed design performs inference operations on a stream of individual images as they are produced and has a deeply pipelined hardware design that allows all layers of a quantized convolutional neural network (QCNN) to compute concurrently with partial image inputs. Using the case of label-free classification of human peripheral blood mononuclear cell (PBMC) subtypes as a proof-of-concept illustration, our system achieves an ultralow classification latency of 34.