-
Bloch Bock posted an update 6 months, 1 week ago
Pseudomonas genus is among the top nosocomial pathogens known to date. Being highly opportunistic, members of pseudomonas genus are most commonly connected with nosocomial infections of urinary tract and ventilator-associated pneumonia. Nevertheless, vaccine development for this pathogenic genus is slow because of no information regarding immunity correlated functional mechanism. In this present work, an immunoinformatics pipeline is used for vaccine development based on epitope-based peptide design, which can result in crucial immune response against outer membrane proteins of pseudomonas genus. A total of 127 outer membrane proteins were analysed, studied and out of them three sequences were obtained to be the producer of non-allergic, highly antigenic T-cell and B-cell epitopes which show good binding affinity towards class II HLA molecules. After performing rigorous screening utilizing docking, simulation, modelling techniques, we had one nonameric peptide (WLLATGIFL) as a good vaccine candidate. The predicted epitopes needs to be further validated for its apt use as vaccine. read more This work paves a new way with extensive therapeutic application against Pseudomonas genus and their associated diseases.Acoustic droplet vaporization (ADV) provides the on-demand production of bubbles for use in ultrasound (US)-based diagnostic and therapeutic applications. The droplet-to-bubble transition process has been shown to involve localized internal gas nucleation, followed by a volume expansion of threefold to fivefold and inertial bubble oscillation, all of which take place within a few microseconds. Monitoring these ADV processes is important in gauging the mechanical effects of phase-change droplets in a biological environment, but this is difficult to achieve using regular optical observations. In this study, we utilized acoustic characterization to investigate the acoustic signatures emitted from phase-change droplets ADV and determined their correlations with the physical behaviors observed using high-speed optical imaging. The experimental results showed that activation with three-cycle 5-MHz US pulse resulted in the acoustic signals.In the last few decades, the medical and healthcare scientific communities have focused their attention on the use or development of real-time monitoring devices and remote control systems. New generations of wearable, portable, and implantable devices offer better and more accurate measurements/prognosis for those that suffer from diseases and/or disabilities. Thus, there are still challenging issues of current ultrasound imaging (USI) systems, such as low-quality ultrasound images, slow time response to emergencies, and location-based operation. Thus, in response to these challenges, we present a new low-cost, portable/wearable 3-D array ultrasound prognosis system with advanced imaging capabilities that offer high-resolution (HR) accurate results in a near real-time response. The USI unique features are based on 2-D array transducers with 3-D overlapping capabilities and a new image enhancement methodology compatible with the system’s structural characteristics to compensate for any loss of image quality. This system will offer an alternative way of ultrasound examination, independent of the radiologist’s skills, that is, a system to be capable of automatic scanning of the volume of interest (VOI) without the guidance of the radiologist.Passive ultrasound imaging is of great interest for cavitation monitoring. Spatiotemporal monitoring of cavitation bubbles in therapeutic applications is possible using an ultrasound imaging probe to passively receive the acoustic signals from the bubbles. Fourier-domain (FD) beamformers have been proposed to process the signals received into maps of the spatial localization of cavitation activity, with reduced computing times with respect to the time-domain approach, and to take advantage of frequency selectivity for cavitation regime characterization. The approaches proposed have been mainly nonadaptive, and these have suffered from low resolution and contrast, due to the many reconstruction artifacts. Inspired by the array-processing literature and in the context of passive ultrasound imaging of cavitation, we propose here a robust estimation of the second-order statistics of data through spatial covariance matrices in the FD or cross-spectral density matrices (CSMs). The benefits of such formalism are illustrated using advanced reconstruction algorithms, such as the robust Capon beamformer, the Pisarenko class beamformer, and the multiple signal classification approach. Through both simulations and experiments in a water tank, we demonstrate that enhanced localization of cavitation activity (i.e., improved resolution and contrast with respect to nonadaptive approaches) is compatible with the rapid and frequency-selective approaches of the FD. Robust estimation of the CSM and the derived adaptive beamformers paves the way to the development of powerful passive ultrasound imaging tools.
The biennial meeting of the Genitourinary Radiation Oncologists of Canada (GUROC) took place November 22-23, 2019. A consensus-building session was held during the meeting addressing topics of emerging interest or controversy in the management of genitourinary malignancies.
Draft statements were debated among all meeting attendees in an open forum with anonymous live voting. Statements for which there was at least 75% agreement among attendees were adopted as GUROC consensus.
Four evidence-based consensus statements were developed. First, the use of prostate radiotherapy is recommended in the setting of de novo low-volume metastatic hormone-sensitive prostate cancer to improve overall survival. Second, the support of ongoing randomized trials evaluating metastasis-directed ablative local therapy in oligometastatic prostate cancer is recommended; where such trials are available, off-trial use of oligometastasis-directed ablative radiotherapy at this time is strongly discouraged. Third, routine use of prostate-rectal hydrogel spacer devices in patients with localized prostate cancer planned to receive external beam radiotherapy is not recommended; instead, selective use in patients at highest risk of rectal toxicity may be considered.