• Pollock Bain posted an update 6 months, 2 weeks ago

    Recent studies identified a conserved phosphorylation site that profoundly affects the functions of HP1 during mitotic phase. In this commentary, we discuss dynamic regulation of HP1 protein by phosphorylation during transcriptional repression and cell cycle.

    Grasses in subfamily Pooideae live in some of the world’s harshest terrestrial environments, from frigid boreal zones to the arid wind-swept steppe. It is hypothesized that the climate distribution of species within this group is driven by differences in climatic tolerance, and that tolerance can be partially explained by variation in stomatal traits.

    We determined aridity index (AI) and minimum temperature of the coldest month (MTCM) for 22 diverse Pooideae accessions and one outgroup, and used comparative methods to assess predicted relationships for climate traits versus fitness traits, stomatal diffusive conductance to water (gw), and speed of stomatal closure following drought and/or cold.

    Results demonstrate that AI and MTCM predict variation in survival/regreening following drought/cold, and gw under drought/cold is positively correlated with ẟ 13C-measured water use efficiency (WUE). However, the relationship between climate traits and fitness under drought/cold was not explained by gw or speed of stomatal closure.

    These findings suggest that Pooideae distributions are at least partly determined by tolerance to aridity and above freezing cold, but that variation in tolerance is not uniformly explained by variation in stomatal traits.

    These findings suggest that Pooideae distributions are at least partly determined by tolerance to aridity and above freezing cold, but that variation in tolerance is not uniformly explained by variation in stomatal traits.Ammonium (NH4+) is toxic to root growth in most plants already at moderate levels of supply, but mechanisms of root growth tolerance to NH4+ remain poorly understood. Here, we report that high levels of NH4+ induce nitric oxide (NO) accumulation, while inhibiting potassium (K+) acquisition via SNO1 (sensitive to nitric oxide 1)/SOS4 (salt overly sensitive 4), leading to the arrest of primary root growth. High levels of NH4+ also stimulated the accumulation of GSNOR (S-nitrosoglutathione reductase) in roots. GSNOR overexpression improved root tolerance to NH4+. Loss of GSNOR further induced NO accumulation, increased SNO1/SOS4 activity, and reduced K+ levels in root tissue, enhancing root growth sensitivity to NH4+. Moreover, the GSNOR-like gene, OsGSNOR, is also required for NH4+ tolerance in rice. Immunoblotting showed that the NH4+-induced GSNOR protein accumulation was abolished in the VTC1- (vitamin C1) defective mutant vtc1-1, which is hypersensititive to NH4+ toxicity. GSNOR overexpression enhanced vtc1-1 root tolerance to NH4+. Our findings suggest that induction of GSNOR increases NH4+ tolerance in Arabidopsis roots by counteracting NO-mediated suppression of tissue K+, which depends on VTC1 function.

    Most protein-structure superimposition tools consider only Cartesian coordinates. Yet, much of biology happens on the surface of proteins, which is why proteins with shared ancestry and similar function often have comparable surface shapes. Superposition of proteins based on surface shape can enable comparison of highly divergent proteins, identify convergent evolution and enable detailed comparison of surface features and binding sites.

    We present ZEAL, an interactive tool to superpose global and local protein structures based on their shape resemblance using 3D (Zernike-Canterakis) functions to represent the molecular surface. In a benchmark study of structures with the same fold, we show that ZEAL outperforms two other methods for shape-based superposition. In addition, alignments from ZEAL was of comparable quality to the coordinate-based superpositions provided by TM-align. For comparisons of proteins with limited sequence and backbone-fold similarity, where coordinate-based methods typically fail, ZEAL can often find alignments with substantial surface-shape correspondence. In combination with shape-based matching, ZEAL can be used as a general tool to study relationships between shape and protein function. We identify several categories of protein functions where global shape similarity is significantly more likely than expected by random chance, when comparing proteins with little similarity on the fold level. In particular, we find that global surface shape similarity is particular common among DNA binding proteins.

    ZEAL can be used online at https//andrelab.org/zeal or as a standalone program with command line or graphical user interface. Source files and installers are available at https//github.com/Andre-lab/ZEAL.

    Supplementary data are available at Bioinformatics online.

    Supplementary data are available at Bioinformatics online.This systematic review assesses the literature for estimates of influenza vaccine effectiveness (IVE) against laboratory-confirmed influenza-associated hospitalisation in children. Studies of any design to 08 June 2020 were included if the outcome was hospitalisation, participants were 17 years old or less and influenza infection was laboratory-confirmed. A random-effects meta-analysis of 37 studies that used a test-negative design gave a pooled seasonal IVE against hospitalisation of 53.3% (47.2-58.8) for any influenza. IVE was higher against influenza A/H1N1pdm09 (68.7%, 56.9-77.2) and lowest against influenza A/H3N2 (35.8%, 23.4-46.3). Estimates by vaccine type ranged from 44.3% (30.1-55.7) for LAIV to 68.9% (53.6-79.2) for inactivated vaccines. IVE estimates were higher in seasons when the circulating influenza strains were antigenically matched to vaccine strains (59.3%, 48.3-68.0). Influenza vaccination gives moderate overall protection against influenza-associated hospitalisation in children supporting annual vaccination. Bioactive Compound Library high throughput IVE varies by influenza subtype and vaccine type.The Immune Epitope Database (IEDB) freely provides experimental data regarding immune epitopes to the scientific public. The main users of the IEDB are immunologists who can easily use our web interface to search for peptidic epitopes via their simple single-letter codes. For example, ‘A’ stands for ‘alanine’. Similarly, users can easily navigate the IEDB’s simplified NCBI taxonomy hierarchy to locate proteins from specific organisms. However, some epitopes are non-peptidic, such as carbohydrates, lipids, chemicals and drugs, and it is more challenging to consistently name them and search upon, making access to their data more problematic for immunologists. Therefore, we set out to improve access to non-peptidic epitope data in the IEDB through the simplification of the non-peptidic hierarchy used in our search interfaces. Here, we present these efforts and their outcomes. Database URL http//www.iedb.org/.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account