-
Baird Brogaard posted an update 6 months, 2 weeks ago
The enhancement of even-order harmonics near the cut-off of high-order harmonic spectra from monolayer MoS2 has been experimentally observed recently by several groups. Here we demonstrate that this enhancement can be interpreted as a result of spectral interference between half-cycles with opposite polarity by adopting a fully quantum mechanical calculation. We found that, due to the energy modulation induced by Berry connections, only half-cycles with the same polarity can generate high-order harmonics near the cut-off frequency, thus the lack of destructive interference leads to the enhanced intensity of the corresponding even-order harmonics. The explanation is supported by the frequency shift of the measured harmonic peaks. Our finding revealed the role of inter-half-cycle interference in high-harmonic generation (HHG) from non-centrosymmetric materials.Frequency entangled photon sources are in high demand in a variety of optical quantum technologies, including quantum key distribution, cluster state quantum computation and quantum metrology. In the recent decade, chip-scale entangled photon sources have been developed using silicon platforms, offering robustness, large scalability and CMOS technology compatibility. Here, we report the generation of frequency correlated photon pairs using a 150-GHz silicon nitride ring cavity. First, the device is characterized for studying the phase matching condition during spontaneous four-wave mixing. Next, we evaluate the joint spectrum intensity of the generated photons and confirm the photon pair generation in a total of 42 correlated frequency mode pairs, corresponding to a bandwidth of 51.25 nm. Finally, the experimental results are analyzed and the joint spectral intensity is quantified in terms of the phase matching condition.Semantic segmentation (SS) is promising for outdoor scene perception in safety-critical applications like autonomous vehicles, assisted navigation and so on. However, traditional SS is primarily based on RGB images, which limits the reliability of SS in complex outdoor scenes, where RGB images lack necessary information dimensions to fully perceive unconstrained environments. As a preliminary investigation, we examine SS in an unexpected obstacle detection scenario, which demonstrates the necessity of multimodal fusion. Thereby, in this work, we present EAFNet, an Efficient Attention-bridged Fusion Network, to exploit complementary information coming from different optical sensors. Specifically, we incorporate polarization sensing to obtain supplementary information, considering its optical characteristics for robust representation of diverse materials. By using a single-shot polarization sensor, we build the first RGB-P dataset which consists of 394 annotated pixel-aligned RGB-polarization images. A comprehensive variety of experiments shows the effectiveness of EAFNet to fuse polarization and RGB information, as well as its flexibility to be adapted to other sensor combination scenarios.The imaging quality of quantitative phase imaging (QPI) based on the transport of intensity equation (TIE) can be improved using a higher-order approximation for defocused intensity distributions. However, this requires mechanically scanning an image sensor or object along the optical axis, which in turn requires a precisely aligned optical setup. To overcome this problem, a computer-generated hologram (CGH) technique is introduced to TIE-based QPI. A CGH generating defocused point spread function is inserted in the Fourier plane of an object. The CGH acts as a lens and grating with various focal lengths and orientations, allowing multiple defocused intensity distributions to be simultaneously detected on an image sensor plane. The results of a numerical simulation and optical experiment demonstrated the feasibility of the proposed method.The mechanism of formation of the polarimetric signal observed in the spin noise spectroscopy (SNS) is analyzed from the viewpoint of the light scattering theory. A rigorous calculation of the polarimetric signal (Faraday rotation or ellipticity) recorded in the SNS is presented in the approximation of single scattering. We show that it is most correctly to consider this noise as a result of scattering of the probe light beam by fluctuating susceptibility of the medium. Fluctuations of the gyrotropic (antisymmetric) part of the susceptibility tensor lead to appearance of the typical for the SNS Faraday rotation noise at the Larmor frequency. At the same time, fluctuations of linear anisotropy of the medium (symmetric part of the susceptibility tensor) give rise to the ellipticity noise of the probe beam spectrally localized at the double Larmor frequency. The results of the theoretical analysis well agree with the experimental data on the ellipticity noise in cesium vapor.Large aperture, lightweight optics are frequently utilized in modern optical systems. However, despite the use of advanced techniques for developing their materials, fabrication, and mechanical structure, the coatings placed on the substrates induce slight lattice mismatches and increase the thin film stress on polished surfaces. learn more This significantly distorts nano-accuracy optical surfaces, especially on lightweight freeform surfaces. In this study, we construct a finite element model (FEM) and a ray tracing model to estimate the impact of the stress-induced deformation of the coating on a 1.5m class lightweight silicon carbine (SiC) mirror with a freeform surface. Our simulation results are within 10% deviation from the experimental results, and the deformation texture map matches these results as well. We discuss several possible strategies to overcome stress-induced deformation, including fabrication pre-compensation, lightweight structure redesign, and an inverse print-through effect.It has been demonstrated that electronic coherences across many eV can be detected in pump-probe experiments involving high harmonic sources. An additional degree of control over the phase matching can be employed by investigating a more general class of multi-wave mixing. Non-collinear multi-wave mixing of high harmonics with energy (q1ω1 + q2ω2) can be selectively detected along the direction of (q1k1 + q2k2). Simulations based on a recently developed semi-perturbative approach show that only the specific harmonic signals with q1ω1 close to the energy difference between ground state and excited states are observable when the two input pulses are well separated in time. The coherent dynamics between different states can be selectively tracked by detecting the time-delay dependent signals with different q1k1, which can overcome the potential spectral congestion in real experiments. Additionally, such non-collinear geometry can be used to separate the dephasing induced decay and collision induced recovery behaviors of pump-probe high harmonic signal typically observed in the time-resolved high harmonic pump-probe signals.