-
Morales Joyner posted an update 6 months ago
Patients with lifetime suicide attempts (
= 8) had more varied objective sleep (a higher standard deviation of center of daily inactivity , consolidation of daily inactivity , sleep offset , and total sleep , and a lower consolidation of daily inactivity ).
Subjective insomnia, a nonstigmatized symptom, can complement suicidality screens. Longer follow-ups and larger samples are warranted to understand whether real-time sleep monitoring predicts suicidal ideation in patient subgroups or individually.
Subjective insomnia, a nonstigmatized symptom, can complement suicidality screens. Longer follow-ups and larger samples are warranted to understand whether real-time sleep monitoring predicts suicidal ideation in patient subgroups or individually.Background Proteome studies for multiple renal diseases is bare. Methodology & results Using isobaric tags for relative and absolute quantitation labeling, many differentially expressed proteins (DEPs) were identified in acute kidney injury (AKI), AKI + chronic kidney disease (CKD), diabetic CKD and nondiabetic CKD with or without IgA nephropathy (IgAN). Comparative analysis indicated that 34, 35, 17, 91 and 14 unique DEPs were found in AKI, AKI + CKD, CKD, diabetic CKD and nondiabetic CKD. Compared with nondiabetic CKD with IgAN, 47 unique DEPs were found in that without IgAN. Serum amyloid A1 (SAA1) and hepatocyte growth factor activator were unregulated in AKI and nondiabetic CKD without IgAN, respectively. Regenerating islet-derived protein 3-α (Reg3A) upregulation is associated with AKI and AKI + CKD patients. Conclusion This research contributes to urinary biomarker discovery from multiple renal diseases.In recent years, microporous modified atmosphere packaging has been widely concerned because of its adjustable air permeability and low processing cost. With the development and increasing demand of fresh food industry, the limited permeability of film in modified atmosphere packaging can’t meet the fresh-keeping requirements of fresh foods, especially vegetables and fruits. Microporous film can flexibly adjust the gas permeability according to the physiological metabolic characteristics of fresh foods, which has gradually become a fresh-keeping technology in the domain of vegetables and fruits. This paper reviewed the research progress of microporous modified atmosphere packaging and its extension on shelf life of fresh foods. The latest applied researches were described in a comprehensive manner, particularly fruits and vegetables. Besides, this article also covered theoretical support and analysis, including the perforation mode, air permeability mechanism and mathematical model of microporous film, the characteristics of fresh foods, pore parameters and traits of film materials. This paper payed attention to the application of environmentally friendly degradable film materials (biological film materials, nano materials) in fruits and vegetables preservation. Research has shown that the degradable material can enlarge the fresh-keeping effect of microporous modified atmosphere packaging, which is worthy of further research and development. Finally, the development trends and directions in the future were discussed.Flexible and stretchable strain sensors are vital for emerging fields of wearable and personal electronics, but it is a huge challenge for them to possess both wide-range measurement capability and good sensitivity. In this study, a highly stretchable strain sensor with a wide strain range and a good sensitivity is fabricated based on smart composites of carbon black (CB)/wrinkled Ecoflex. The sensor exhibits a maximum recoverable strain of up to 500% and a high gauge factor of 67.7. It has a low hysteresis, a fast signal response (as short as 120 ms), and a high reproducibility (up to 5000 cycles with a strain of 150%). The sensor is capable of detecting and capturing wide-range human activities, from speech recognition and pulse monitoring to vigorous motions. It is also applicable for real-time monitoring of robot movements and vehicle security crash in an anthropomorphic field. More importantly, the sensor is successfully used to send signals of a volunteer’s breathing data to a local hospital in real time through a big data cloud platform. This research provides the feasibility of using a strain sensor for wearable Internet of things and demonstrates its exciting prospect for healthcare applications.Recent research has revealed the use of graphene oxide (GO) and its derivatives as a potential biomaterial because of their attractive physicochemical characteristics and functional properties. However, if GO and related derivatives are to become useful materials for biomedical applications, it will be necessary to evaluate their biodistribution for health and safety considerations. To obtain a more accurate biodistribution for GO, we (i) developed a postadministration labeling strategy employing DNA-conjugated gold nanoparticles (DNA-AuNPs) to selectively label administered GO in Solvable-treated tissue samples and (ii) constructed an automatic sample pretreatment scheme (using a C18-packed minicolumn) to effectively separate the DNA-AuNP-labeled GO from the unbound DNA-AuNPs and the dissolved tissue matrices, thereby enabling ultrasensitive, interference-free quantification of GO through measurement (inductively coupled plasma mass spectrometry) of the Au signal intensities. selleck The DNA-AuNPs can bind to GO in a concentration- and time-dependent manner. After optimizing the labeling conditions (DNA length, incubation pH, DNA-AuNP concentration, and incubation time) and the separation scheme (sample loading flow rate, rinsing volume, and eluent composition), we found that A20R20-AuNPs (R20 random DNA sequence including A, T, C, and G) had the strongest binding affinity for labeling of the administered GO (dissociation constant 36.0 fM) and that the method’s detection limit reached 9.3 ag L-1 with a calibration curve having a working range from 10-1 to 1010 fg L-1. Moreover, this approach revealed that the intravenously administered GO accumulated predominantly in the liver and spleen at 1 and 12 h post administration, with apparent discrepancies in the concentrations measured using pre- and postadministration labeling strategies.