-
Hartvigsen Nixon posted an update 6 months ago
eficial protective effects against platelet aggregation and arterial thrombosis with minimal effect on hemostasis.
The 12-LOX product 12(S)-HETE stimulates GPR31-Gi-signaling pathways, which enhance thrombin-PAR4 platelet activation and arterial thrombosis in human platelets and mouse models. Suppression of this bioactive lipid pathway, as exemplified by a GPR31 pepducin antagonist, may provide beneficial protective effects against platelet aggregation and arterial thrombosis with minimal effect on hemostasis.
Fibrin is considered to strengthen thrombus formation via integrin αIIbβ3, but recent findings indicate that fibrin can also act as ligand for platelet glycoprotein VI. Approach and Results To investigate the thrombus-forming potential of fibrin and the roles of platelet receptors herein, we generated a range of immobilized fibrin surfaces, some of which were cross-linked with factor XIIIa and contained VWF-BP (von Willebrand factor-binding peptide). Multicolor microfluidics assays with whole-blood flowed at high shear rate (1000 s
) indicated that the fibrin surfaces, regardless of the presence of factor XIIIa or VWF-BP, supported platelet adhesion and activation (P-selectin expression), but only microthrombi were formed consisting of bilayers of platelets. Fibrinogen surfaces produced similar microthrombi. Markedly, tiggering of coagulation with tissue factor or blocking of thrombin no more than moderately affected the fibrin-induced microthrombus formation. Absence of αIIbβ3 in Glanzmann thrombasthenia annulled platelet adhesion. Blocking of glycoprotein VI with Fab 9O12 substantially, but incompletely reduced platelet secretion, Ca
signaling and aggregation, while inhibition of Syk further reduced these responses. In platelet suspension, glycoprotein VI blockage or Syk inhibition prevented fibrin-induced platelet aggregation. Microthrombi on fibrin surfaces triggered only minimal thrombin generation, in spite of thrombin binding to the fibrin fibers.
Together, these results indicate that fibrin fibers, regardless of their way of formation, act as a consolidating surface in microthrombus formation via nonredundant roles of platelet glycoprotein VI and integrin αIIbβ3 through signaling via Syk and low-level Ca
rises.
Together, these results indicate that fibrin fibers, regardless of their way of formation, act as a consolidating surface in microthrombus formation via nonredundant roles of platelet glycoprotein VI and integrin αIIbβ3 through signaling via Syk and low-level Ca2+ rises.
Chronic hemolysis is a hallmark of sickle cell disease (SCD) and a driver of vasculopathy; however, the mechanisms contributing to hemolysis remain incompletely understood. Although XO (xanthine oxidase) activity has been shown to be elevated in SCD, its role remains unknown. XO binds endothelium and generates oxidants as a byproduct of hypoxanthine and xanthine catabolism. We hypothesized that XO inhibition decreases oxidant production leading to less hemolysis. Approach and Results Wild-type mice were bone marrow transplanted with control (AA) or sickle (SS) Townes bone marrow. After 12 weeks, mice were treated with 10 mg/kg per day of febuxostat (Uloric), Food and Drug Administration-approved XO inhibitor, for 10 weeks. Hematologic analysis demonstrated increased hematocrit, cellular hemoglobin, and red blood cells, with no change in reticulocyte percentage. Significant decreases in cell-free hemoglobin and increases in haptoglobin suggest XO inhibition decreased hemolysis. Myographic studies demonstrated improved pulmonary vascular dilation and blunted constriction, indicating improved pulmonary vasoreactivity, whereas pulmonary pressure and cardiac function were unaffected. The role of hepatic XO in SCD was evaluated by bone marrow transplanting hepatocyte-specific XO knockout mice with SS Townes bone marrow. However, hepatocyte-specific XO knockout, which results in >50% diminution in circulating XO, did not affect hemolysis levels or vascular function, suggesting hepatocyte-derived elevation of circulating XO is not the driver of hemolysis in SCD.
Ten weeks of febuxostat treatment significantly decreased hemolysis and improved pulmonary vasoreactivity in a mouse model of SCD. Although hepatic XO accounts for >50% of circulating XO, it is not the source of XO driving hemolysis in SCD.
50% of circulating XO, it is not the source of XO driving hemolysis in SCD.
Patients with coronavirus disease 2019 (COVID-19) have a high rate of thrombosis. We hypothesized that severe acute respiratory syndrome coronavirus 2 leads to induction of TF (tissue factor) expression and increased levels of circulating TF-positive extracellular vesicles (EV) that may drive thrombosis. Approach and Results We measured levels of plasma EV TF activity in 100 patients with COVID-19 with moderate and severe disease and 28 healthy controls. Levels of EV TF activity were significantly higher in patients with COVID-19 compared with controls. https://www.selleckchem.com/products/fluzoparib.html In addition, levels of EV TF activity were associated with disease severity and mortality. Finally, levels of EV TF activity correlated with several plasma markers, including D-dimer, which has been shown to be associated with thrombosis in patients with COVID-19.
Our results indicate that severe acute respiratory syndrome coronavirus 2 infection induces the release of TF-positive EVs into the circulation that are likely to contribute to thrombosis in patients with COVID-19. EV TF activity was also associated with severity and mortality.
Our results indicate that severe acute respiratory syndrome coronavirus 2 infection induces the release of TF-positive EVs into the circulation that are likely to contribute to thrombosis in patients with COVID-19. EV TF activity was also associated with severity and mortality.
The objective of this study is to determine the role of SPA (surfactant protein A) in vascular smooth muscle cell (SMC) phenotypic modulation and vascular remodeling. Approach and Results PDGF-BB (Platelet-derived growth factor-BB) and serum induced SPA expression while downregulating SMC marker gene expression in SMCs. SPA deficiency increased the contractile protein expression. Mechanistically, SPA deficiency enhanced the expression of myocardin and TGF (transforming growth factor)-β, the key regulators for contractile SMC phenotype. In vivo, SPA was induced in medial and neointimal SMCs following mechanical injury in both rat and mouse carotid arteries. SPA knockout in mice dramatically attenuated the wire injury-induced intimal hyperplasia while restoring SMC contractile protein expression in medial SMCs. These data indicate that SPA plays an important role in SMC phenotype modulation and vascular remodeling in vivo.
SPA is a novel protein factor modulating SMC phenotype. Blocking the abnormal elevation of SPA may be a potential strategy to inhibit the development of proliferative vascular diseases.