-
Rush Leth posted an update a month ago
According to our experimentation, a modified DBN with hidden layes (300-200-100-10) performs best with 4.59E-05, 0.0068 and 0.94 values of MSE, RMSE and R value respectively on testing samples. However, we found that training DBN is more exhaustive and computationally intensive than other deep learning architectures. Findings of this research can be further utilized as basis for the advance forecasting of other weather parameters with same climate conditions.In the last decade, cloud computing becomes the most demanding platform to resolve issues and manage requests across the Internet. Cloud computing takes along terrific opportunities to run cost-effective scientific workflows without the requirement of possessing any set-up for customers. It makes available virtually unlimited resources that can be attained, organized, and used as required. Resource scheduling plays a fundamental role in the well-organized allocation of resources to every task in the cloud environment. However along with these gains many challenges are required to be considered to propose an efficient scheduling algorithm. An efficient Scheduling algorithm must enhance the implementation of goals like scheduling cost, load balancing, makespan time, security awareness, energy consumption, reliability, service level agreement maintenance, etc. To achieve the aforementioned goals many state-of-the-art scheduling techniques have been proposed based upon hybrid, heuristic, and meta-heuristic approaches. This work reviewed existing algorithms from the perspective of the scheduling objective and strategies. We conduct a comparative analysis of existing strategies along with the outcomes they provide. We highlight the drawbacks for insight into further research and open challenges. The findings aid researchers by providing a roadmap to propose efficient scheduling algorithms.Natural language inference (NLI) is an essential subtask in many natural language processing applications. It is a directional relationship from premise to hypothesis. A pair of texts is defined as entailed if a text infers its meaning from the other text. The NLI is also known as textual entailment recognition, and it recognizes entailed and contradictory sentences in various NLP systems like Question Answering, Summarization and Information retrieval systems. This paper describes the NLI problem attempted for a low resource Indian language Malayalam, the regional language of Kerala. More than 30 million people speak this language. The paper is about the Malayalam NLI dataset, named MaNLI dataset, and its application of NLI in Malayalam language using different models, namely Doc2Vec (paragraph vector), fastText, BERT (Bidirectional Encoder Representation from Transformers), and LASER (Language Agnostic Sentence Representation). Our work attempts NLI in two ways, as binary classification and as multiclass classification. For both the classifications, LASER outperformed the other techniques. For multiclass classification, NLI using LASER based sentence embedding technique outperformed the other techniques by a significant margin of 12% accuracy. There was also an accuracy improvement of 9% for LASER based NLI system for binary classification over the other techniques.Unmanned Aerial Systems (UAVs, Drones), initially known only for their military applications, are getting increasingly popular in the civil sector as well. Over the military canvas, drones have already proven themselves as a potent force multiplier through unmanned, round-the-clock, long-range and high-endurance missions for surveillance, reconnaissance, search and rescue, and even armed combat applications. With the emergence of the Internet of Things (IoT), commercial deployments of drones are also growing exponentially, ranging from cargo and taxi services to agriculture, disaster relief, risk assessment and monitoring of critical infrastructures. Irrespective of the deployment sector, drones are often entrusted to conduct safety, time and liability critical tasks, thus requiring secure, robust and trustworthy operations. In contrast, the rise in UAVs’ demand, coupled with market pressure to reduce size, weight, power and cost (SwaP-C) parameters, has caused vendors to often ignore security aspects, thus icuss some of the recent experiments from open literature which utilized commercially available hardware for successfully conducting spoofing attacks.Sensors in Cyber-Physical Systems (CPS) are typically used to collect various aspects of the region of interest and transmit the data towards upstream nodes for further processing. However, data collection in CPS is often unreliable due to severe resource constraints (e.g., bandwidth and energy), environmental impacts (e.g., equipment faults and noises), and security concerns. Besides, detecting an event through the aggregation in CPS can be intricate and untrustworthy if the sensor’s data is not validated during data acquisition, before transmission, and before aggregation. This paper introduces In-network Generalized Trustworthy Data Collection (IGTDC) framework for event detection in CPS. This framework facilitates reliable data for aggregation at the edge of CPS. The main idea of IGTDC is to enable a sensor’s module to examine locally whether the event’s acquired data is trustworthy before transmitting towards the upstream nodes. It further validates whether the received data can be trusted or not before data aggregation at the sink node. Additionally, IGTDC helps to identify faulty sensors. For reliable event detection, we use collaborative IoT tactics, gate-level modeling with Verilog User Defined Primitive (UDP), and Programmable Logic Device (PLD) to ensure that the event’s acquired data is reliable before transmitting towards the upstream nodes. We employ Gray code in gate-level modeling. It helps to ensure that the received data is reliable. Gray code also helps to distinguish a faulty sensor. https://www.selleckchem.com/products/kt-474.html Through simulation and extensive performance analysis, we demonstrate that the collected data in the IGTDC framework is reliable and can be used in the majority of CPS applications.Selection and sorting the Cartesian sum, X + Y, are classic and important problems. Here, a new algorithm is presented, which generates the top k values of the form X i + Y j . The algorithm relies on layer-ordered heaps, partial orderings of exponentially sized layers. The algorithm relies only on median-of-medians and is simple to implement. Furthermore, it uses data structures contiguous in memory, cache efficient, and fast in practice. The presented algorithm is demonstrated to be theoretically optimal.