• Byrd Chaney posted an update 6 months, 2 weeks ago

    The spontaneous emission rate (SER) of a chromophore in a nanoparticle (NP) is determined by the modification of the electric field by its environment. Previous studies of this local field effect have dispersed NPs in non-chemically interacting media of different refractive index (RI) and measured the emission lifetimes. Unfortunately, the applicable solvents cover only a small range of RI so that the test of a theoretical model is limited. We have utilized the variation of temperature to modify RI so that a more comprehensive test of a model can be achieved. Yttrium aluminium garnet (YAG) NPs doped with Ce3+ ions were immersed in different alcohols and the lifetime of the electric dipole allowed 5d1→ 4f1 transition was measured at different temperatures in each case. In order to clarify and confirm our results we have employed two different dopant concentrations of Ce/Y, near 1.3 at% and 0.13 at%. The Ce3+ lifetimes were well-fitted to a formula relating the decay rate to the dielectric parameters of the nanocomposite and the volumetric content of the NPs. Two parameters were derived the SER of the bulk material (found to be effectively constant) and the nonradiative decay rate, which varied as the multiphonon relaxation rate for the more heavily-doped materials. The emission from the YAGCe3+ NPs was attributed to Ce3+ ions with 8-coordination to oxygen in addition to surface Ce3+ ions with lower coordination number. see more The bulk radiative lifetime was determined as 66 ± 3 ns.Despite the health benefits of Vitis vinifera L. leaves, its anti-obesity potential has not been fully explored. In this work, we showed that Vitis vinifera L. leaf extract (VLE) inhibits the pancreatic lipase activity. Intragastric administration of VLE to mice led to a significant decrease in the body weight, tissue fat accumulation, levels of cholesterol, low-density lipoprotein and triglyceride compared to mice fed with high fat diet. We also found a lower level of neuropeptide-Y (NPY) in the serum and hypothalamus and a higher level of fibroblast growth factor 15 in mice supplemented with VLE. These results suggested that VLE regulates both the NPY-mediated pathway and the bile acid-FGF15 pathway to control energy metabolism and body weight gain. The composition of VLE was further investigated by a targeted metabolomics approach, which identified 21 compounds including phenolic acids, flavones, flavanols, flavanones, coumarins, and stilbenes. Taken together, we demonstrated the capacity of grape leaves in reducing obesity, which could be mediated by NPY and bile acids. Identification of putative active compounds in VLE also open the path for further studies to determine their effectiveness individually to treat obesity.Perovskite oxides have attracted great attention in electrochemistry due to their compositional and structural flexibility. Herein, microwave/ultrasound assisted hydrothermal procedures were developed to synthesize Ce-doped LaCoO3 perovskite oxide as bifunctional electrocatalysts for OER and HER application, achieving highly efficient bifunctional catalytic performance. The obtained LCC4 exhibited excellent electrocatalytic activity with an overpotential of 380 mV and 305 mV at 10 mA cm-2 toward OER and HER, respectively. The lower Tafel slopes of 80 mV per decade and 144 mV per decade for OER and HER, respectively, indicated the faster reaction kinetics for the improved inherent electrocatalytic activity. The outstanding long-term durability of LCC4 in alkaline conditions was also vital to the practical applications of water electrolysis. The improved bifunctional electrocatalytic activity was attributed to the synergistic effects of excellent conductivity and enriched active sites arising from A-site substitution. This work not only provides an efficient strategy for the development of perovskite oxide-based electrocatalysts but also puts forward a new insight on bifunctional electrocatalysts for overall water splitting.Currently, little is known regarding the association between dietary choline intake and osteoporosis in elderly individuals, as well as if such intakes affect bone health and result in fractures. This study was aimed to examine associations between daily dietary choline intake and osteoporosis in elderly individuals. A total of 31 034 participants from the National Health and Nutritional Examination Survey (NHANES) during 2005-2010 were enrolled, and 3179 participants with complete data and aged 65 years and older were identified. Baseline characteristics and dietary intake data were obtained through method of in-home administered questionnaires. Of 3179 individuals with a mean age of 73.7 ± 5.6 years, female (P less then 0.001) and non-hispanic white (P less then 0.001) occupied a higher proportion in the osteoporosis group. The logistic regression analysis indicated that the prevalence of osteoporosis in three tertile categories with gradually enhanced dietary choline intake was decreased progressively (P for trend less then 0.001). The restricted cubic spline (RCS) showed that the risk of osteoporosis generally decreased with increasing daily dietary choline intake (P less then 0.001), while this trend was not apparent in relation between the daily dietary choline intake and risk of hip fracture (P = 0.592). The receiver operating characteristic (ROC) analysis identified a daily dietary choline intake of 232.1 mg as the optimal cutoff value for predicting osteoporosis. Our nationwide data suggested that a lower level of daily dietary choline intake was positively associated with the increased risk of osteoporosis in the US elderly population.Depression is an important global health issue that is associated with serious physical and mental health consequences. The field of nutritional psychiatry has generated observational and efficacy data supporting a role for healthy dietary patterns in depression. Here, we aim to evaluate the effects of high-fat diet (HFD) consumption on depressive-like behaviors. BALB/c mice were grouped randomly control, chronic restraint stress (CRS), HFD and CRS + HFD groups. The depressive-like behavior was evaluated using behavioral tests. The serotonin content in murine brain tissue and blood lipid concentrations were detected by ELISA. The fatty acid content in the liver, adipose tissue of epididymis, brain tissue, and serum of mice was determined by gas chromatography (GC). Expression of the fatty acid synthesis pathway-related enzymes at the mRNA level was analyzed by qRT-PCR. The results indicated that a high-fat diet could promote depressive-like behavior. In comparison with regular feeding, concentrations of blood lipids were significantly changed in the HFD group.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account