-
Peters Leslie posted an update 6 months ago
To the best of authors’ knowledge, this is the first time that unified material parameters of CNTs are derived through a combined MD-micropolar continuum theory.Inherited ichthyoses represent a large heterogeneous group of skin disorders characterised by impaired epidermal barrier function and disturbed cornification. Current knowledge about disease mechanisms has been uncovered mainly through the use of mouse models or human skin organotypic models. However, most mouse lines suffer from severe epidermal barrier defects causing neonatal death and human keratinocytes have very limited proliferation ability in vitro. Therefore, the development of disease models based on patient derived human induced pluripotent stem cells (hiPSCs) is highly relevant. For this purpose, we have generated hiPSCs from patients with congenital ichthyosis, either non-syndromic autosomal recessive congenital ichthyosis (ARCI) or the ichthyosis syndrome trichothiodystrophy (TTD). hiPSCs were successfully differentiated into basal keratinocyte-like cells (hiPSC-bKs), with high expression of epidermal keratins. In the presence of higher calcium concentrations, terminal differentiation of hiPSC-bKs was induced and markers KRT1 and IVL expressed. TTD1 hiPSC-bKs showed reduced expression of FLG, SPRR2B and lipoxygenase genes. ARCI hiPSC-bKs showed more severe defects, with downregulation of several cornification genes. The application of hiPSC technology to TTD1 and ARCI demonstrates the successful generation of in vitro models mimicking the disease phenotypes, proving a valuable system both for further molecular investigations and drug development for ichthyosis patients.The immunologic aspects of radiation pneumonitis (RP) are unclear. We analyzed variations in cytokine profiles between patients with grade (Gr) 0-1 and Gr ≥ 2 RP. Fifteen patients undergoing concurrent chemoradiotherapy for non-small cell lung cancer were included. Blood samples of 9 patients with Gr 0-1 and 6 with Gr ≥ 2 RP were obtained from the Biobank. Cytokine levels were evaluated using an enzyme linked immunosorbent assay at before radiotherapy (RT) initiation, 1, 3, and 6 weeks post-RT initiation, and 1 month post-RT completion. Concentrations of granulocyte colony-stimulating factor (G-CSF), interleukin (IL)-6, IL-10, IL-13, IL-17, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β were analyzed; none were related to the occurrence of Gr ≥ 2 RP at pre-RT initiation. At 3 weeks, relative changes in the G-CSF, IL-6, and IFN-γ levels differed significantly between the groups (p = 0.026, 0.05 and 0.026, respectively). One month post-RT completion, relative changes of IL-17 showed significant differences (p = 0.045); however, relative changes in TNF-α, IL-10, IL-13, and TGF-β, did not differ significantly. Evaluation of changes in IL-6, G-CSF, and IFN-γ at 3 weeks after RT initiation can identify patients pre-disposed to severe RP. The mechanism of variation in cytokine levels in relation to RP severity warrants further investigation.This paper reports the analytical detection and energetic properties of a glucose-fed Direct Catalytic Fuel Cell (DCFC) operated in association with yeast cells (Saccharomyces Cerevisiae). The cell was tested in a potentiostatic mode, and the operating conditions were optimized to maximize the current produced by a given concentration of glucose. Results indicate that the DCFC is characterized by a glucose detection limit of the order to 21 mmol L-1. The cell was used to estimate the “pool” of carbohydrate content in commercial soft drinks. Furthermore, the use of different carbohydrates, such as fructose and sucrose, has been shown to result in a good current yield.The microbiome plays an important role in a wide variety of skin disorders. Not only is the skin microbiome altered, but also surprisingly many skin diseases are accompanied by an altered gut microbiome. The microbiome is a key regulator for the immune system, as it aims to maintain homeostasis by communicating with tissues and organs in a bidirectional manner. Hence, dysbiosis in the skin and/or gut microbiome is associated with an altered immune response, promoting the development of skin diseases, such as atopic dermatitis, psoriasis, acne vulgaris, dandruff, and even skin cancer. Here, we focus on the associations between the microbiome, diet, metabolites, and immune responses in skin pathologies. This review describes an exhaustive list of common skin conditions with associated dysbiosis in the skin microbiome as well as the current body of evidence on gut microbiome dysbiosis, dietary links, and their interplay with skin conditions. An enhanced understanding of the local skin and gut microbiome including the underlying mechanisms is necessary to shed light on the microbial involvement in human skin diseases and to develop new therapeutic approaches.Accumulating evidence supports the role of PDZ-binding kinase (PBK)/T-lymphokine-activated killer-cell-originated protein kinase (TOPK) in mitosis and cell-cycle progression of mitotically active cells, especially proliferative malignant cells. click here PBK/TOPK was confirmed to be associated with the development, progression, and metastasis of malignancies. Therefore, it is a potential therapeutic target in cancer therapy. Many studies have been conducted to explore the clinical applicability of potent PBK/TOPK inhibitors. However, PBK/TOPK has also been shown to be overexpressed in normal proliferative cells, including sperm and neural precursor cells in the subventricular zone of the adult brain, as well as under pathological conditions, such as ischemic tissues, including the heart, brain, and kidney, and plays important roles in their physiological functions, including proliferation and self-renewal. Thus, more research is warranted to further our understanding of PBK/TOPK inhibitors before we can consider their applicability in clinical practice. In this study, we first review the findings, general features, and signaling mechanisms involved in the regulation of mitosis and cell cycle. We then review the functions of PBK/TOPK in pathological conditions, including tumors and ischemic conditions in the heart, brain, and kidney. Finally, we summarize the advances in potent and selective inhibitors and describe the potential use of PBK/TOPK inhibitors in clinical settings.