• Egan Purcell posted an update a month ago

    Similarly, PSL treatment at 100 µg L-1 that significantly induced cat expression in gills or sod1 in visceral mass showed repressed mRNA levels when combined with As (reduction of 2222% and 34%, respectively, compared to the control). This study suggested a protective effect of the interaction between NPs and As, possibly by decreasing both contaminants’ surface reactivity.The Goldilocks Work Principle expresses that productive work should be redesigned to comprise physical behaviors of different intensities in a composition promoting workers’ health and fitness. This study is the first to assess the feasibility of redesigning work in an industrial setting according to the Goldilocks Work Principle. We recruited workers (n = 20) from a brewery in Denmark, and we conducted a participatory 16-week intervention including a workshop and two consultations. The workshop aimed to support the workers in modifying their work, while the consultations assisted the eventual implementation. Feasibility was evaluated as per three aspects (1) developing modifications of work, (2) implementing these modifications, and (3) changing physical behavior and self-reported fatigue, pain and energy. The three aspects were addressed through records completed by the workers, measurements of workers’ physical behavior and intensity during ‘control’ workdays (i.e., usual work) and ‘intervention’ workdays (i.e., modified work), and self-reported fatigue, pain and energy level following both types of workday. Five modifications to work were developed, and three of these five modifications were implemented. To some extent, physical behavior and intensity changed as intended during ‘intervention’ workdays compared to ‘control’ workdays. Workers were also less fatigued, had less pain, and had more energy after ‘intervention’ workdays. These results suggest that it is feasible to develop and implement modified work based on the Goldilocks Work Principle among industrial workers. However, we also identified several barriers to the implementation of such modifications.Carbon nanomaterials have attracted significant research attention as core materials in various industrial sectors owing to their excellent physicochemical properties. However, because the preparation of carbon materials is generally accompanied by high-temperature heat treatment, it has disadvantages in terms of cost and process. In this study, highly sensitive carbon nanomaterials were synthesized using a local laser scribing method from a copper-embedded polyacrylonitrile (CuPAN) composite film with a short processing time and low cost. The spin-coated CuPAN was converted into a carbonization precursor through stabilization and then patterned into a carbon nanomaterial of the desired shape using a pulsed laser. In particular, the stabilization process was essential in laser-induced carbonization, and the addition of copper promoted this effect as a catalyst. The synthesized material had a porous 3D structure that was easy to detect gas, and the resistance responses were detected as -2.41 and +0.97% by exposure to NO2 and NH3, respectively. In addition, the fabricated gas sensor consists of carbon materials and quartz with excellent thermal stability; therefore, it is expected to operate as a gas sensor even in extreme environments.Hydroxyapatite (HA) is an important component of the bone mineral phase. It has been used in several applications, such as bone regenerative medicine, tooth implants, drug delivery and oral care cosmetics. In the present study, three different batches of a commercial nanohydroxyapatite (nHA) material were physicochemically-characterized and biologically-evaluated by means of cytotoxicity and genotoxicity using appropriate cell lines based on well-established guidelines (ISO10993-5 and OECD 487). The nHAs were characterized for their size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM) and were found to have a rod-like shape with an average length of approximately 20 to 40 nm. diABZI STING agonist-1 The nanoparticles were cytocompatible according to ISO 10993-5, and the in vitro micronucleus assay showed no genotoxicity to cells. Internalization by MC3T3-E1 cells was observed by TEM images, with nHA identified only in the cytoplasm and extracellular space. This result also validates the genotoxicity since nHA was not observed in the nucleus. The internalization of nHA by the cells did not seem to affect normal cell behavior, since the results showed good biocompatibility of these nHA nanoparticles. Therefore, this work is a relevant contribution for the safety assessment of this nHA material.

    Walking disorders represent the most disabling condition in persons with Multiple Sclerosis (PwMS). Several studies showed good reliability of the 6-min walk test (6MWT) (i.e., especially distance traveled), but little is known about the reliability of the Spatio-temporal (ST) variables in the 6MWT.

    To evaluate the test-retest reliability of ST variables and perceived exertion during the 6MWT in PwMS and comparable healthy persons.

    We explored three 1-min intervals (initial 0′-1′, middle 2’30″-3’30″, end 5′-6′) of the 6MWT. Six ST variables and perceived exertion were measured (respectively, using the GAITRite system and the Borg Scale). These measurements were performed twice, 1 week apart. The test-retest effects were assessed using the intraclass correlation coefficient (ICC) or the weighted kappa.

    Forty-five PwMS and 24 healthy persons were included. The test-retest reliability of ST variables values was good-to-excellent for PwMS (ICC range 0.858-0.919) and moderate-to-excellent for healthy persons (ICC range 0.569-0.946). The test-retest reliability values of perceived exertion were fair for PwMS (weighted kappa range 0.279-0.376) and substantial for healthy persons (weighted kappa range 0.734-0.788).

    The measurement of ST variables during these 6MWT intervals is reliable and applicable in clinical practice and research to adapt rehabilitation care in PwMS.

    The measurement of ST variables during these 6MWT intervals is reliable and applicable in clinical practice and research to adapt rehabilitation care in PwMS.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account