• Mattingly Bauer posted an update 6 months ago

    network cancer care, often extending into rural communities. Coordinating care through improved clinical trial access and greater use of patient navigation, care paths, coordinated EMRs, and quality measures is likely to improve patient outcomes. Although it is premature to draw firm conclusions, the survey results are appropriate for mapping next steps and data queries.

    CAR T-cell therapy has revolutionized the treatment of patients with hematologic malignancies, but it can result in prolonged hospitalizations and serious toxicities. However, data on the impact of CAR T-cell therapy on healthcare utilization and end-of-life (EoL) outcomes are lacking.

    We conducted a retrospective analysis of 236 patients who received CAR T-cell therapy at 2 tertiary care centers from February 2016 through December 2019. We abstracted healthcare utilization and EoL outcomes from the electronic health record, including hospitalizations, receipt of ICU care, hospitalization and receipt of systemic therapy in the last 30 days of life, palliative care, and hospice referrals.

    Most patients (81.4%; n=192) received axicabtagene ciloleucel. Overall, 28.1% of patients experienced a hospital readmission and 15.5% required admission to the ICU within 3 months of CAR T-cell therapy. Among the deceased cohort, 58.3% (49/84) were hospitalized and 32.5% (26/80) received systemic therapy in the last 30 CAR T-cell therapy, and most deceased recipients of CAR T-cell therapy received intensive EoL care. These findings underscore the need for interventions to optimize healthcare delivery and EoL care for this population.The growing demand for lithium-ion batteries will result in an increasing flow of spent batteries, which must be recycled to prevent environmental and health problems, while helping to mitigate the raw materials dependence and risks of shortage and promoting a circular economy. Combining pyrometallurgical and hydrometallurgical recycling approaches has been the focus of recent studies, since it can bring many advantages. In this work, the effects of incineration on the leaching efficiency of metals from EV LIBs were evaluated. The thermal process was applied as a pre-treatment for the electrode material, aiming for carbothermic reduction of the valuable metals by the graphite contained in the waste. Leaching efficiencies above 70% were obtained for Li, Mn, Ni and Co after 60 min of leaching even when using 0.5 M sulfuric acid, which can be linked to the formation of more easily leachable compounds during the incineration process. When the incineration temperature was increased (600-700 °C), the intensity of graphite signals decreased and other oxides were identified, possibly due to the increase in oxidative conditions. Higher leaching efficiencies of Mn, Ni, Co, and Li were reached at lower temperatures of incineration (400-500 °C) and at higher leaching times, which could be related to the partial carbothermic reduction of the metals.Nowadays, old electrical and electronic gadgets are being replaced constantly by newer versions resulting in huge amounts of waste electronic and electrical products that are collectively termed e-waste. It is estimated that 95% of e-waste recycling in India is done by the informal sector at the cost of their health and the environment. Very little data and no descriptions of recycling processes in the formal sector in India were available in the literature. The objective of this study was to evaluate the status of formal and informal e-waste recycling facilities in India. Seven authorized e-waste handling facilities in West Bengal, Maharashtra, Karnataka and Delhi were visited and most were involved in dismantling work only. In all cases, metals, plastic and glass are recovered from e-waste in compliance with environmental legislation. Challenges faced by the formal sector include lack of awareness among people and very few collection centers throughout the country. Quantification of e-waste generated in India was difficult as imported second-hand electrical and electronic gadgets cannot be separated for electronic waste. There is no mechanism for collecting data regarding e-waste generation in the states or at the Central government level. It is likely that published estimates are based on the indigenous production and import of electrical and electronic goods. see more The current installed e-waste handling capacity of 11 × 105 tons/year of e-waste in the country is woefully inadequate and needs to be enhanced as the minimum requirement is estimated to be 22 × 105 tons/year of e-waste.In a circular economy context, there is a growing need for more sustainable waste management options to recover elements from end-of-life materials. These “secondary ores” represent a source of critical elements that are often present in higher concentration compared to their primary ore. In this work, the recovery of lanthanum (La) from waste nickel metal hydride battery (NiMH) leachate is investigated using an aqueous biphasic system (ABS) process based on a pluronic triblock copolymer (L35). An initial screening is performed to determine the influence of the ABS phase forming salt anion and alizarin red extractant on the La extraction efficiency and selectivity. From these results, a three-step ABS process is developed, varying only the nature of the salt and requiring no additional extractant. In a first step, the ABS composed of L35 + thiocyanate ammoniun + H2O efficiently extracts iron, manganese, and cobalt leaving La, cerium, and Ni in solution. Nickel is subsequently recovered by precipitation using dimethylglyoxime. Finally, La is separated from cerium using the L35 + ammonium nitrate + H2O ABS, recovering 62 g of La with 94% purity per kilogram of black mass of NiMH battery. This work highlights the applicability of ABS for the treatment of raw and complex matrices, potentially allowing for a greener hydrometallurgical treatment of wastes.

    Early identification of ST elevation MI (STEMI) in emergency departments (ED) via electrocardiogram (ECG) expedites intervention. While screening of all ED chest pain ECGs should be obtained within 10 minutes per the American Heart Association, 40% of all ECGs are software-analyzed as “Normal” or “Otherwise Normal.” However, the reliability of this analysis and the time for confirmation read are uncertain. This study investigates the time necessary for Patient Care Technicians (PCTs) to deliver ECGs to ED attendings to confirm automated interpretation.

    A prospective cohort study was conducted at a single academic ED. All patients ≥18 years who had a triage ECG were included. ECGs were obtained within 10 min of arrival, time-stamped, delivered for ED attending review and time-stamped upon PCT return to triage. Data were entered into REDCap and analyzed using StatPlus.

    During the 4-month study, 1768 ECGs were collected. Distribution of automated readings was “Normal ECG” 33.7%; “Otherwise Normal ECG” 11.2%; and “borderline/abnormal” 55.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account