-
Poole Grossman posted an update 6 months, 4 weeks ago
Recently, a multilevel analytic approach called Main Concept, Sequencing, and Story Grammar (MSSG) was presented along with preliminary normative information. MSSG analyses leverage the strong psychometrics and rich procedural knowledge of both main concept analysis and story grammar component coding, complementing it with easy-to-obtain sequencing information for a rich understanding of discourse informativeness and macrostructure. This study is the next critical step for demonstrating the clinical usefulness of MSSG’s six variables (main concept composite, sequencing, main concept+sequencing, essential story grammar components, total episodic components, and episodic complexity) for persons with aphasia (PWAs). We present descriptive statistical information for MSSG variables for a large sample of PWAs and compare their performance to a large sample of persons not brain injured (PNBIs). We observed significant differences between PWAs and PNBIs for all MSSG variables. These differences occurred at the omnibus group level and for each aphasia subtype, even for PWAs with very mild impairment that is not detected with standardized aphasia assessment. Differences between PWAs and PNBIs were also practically significant, with medium to large effect sizes observed for nearly all aphasia subtypes and MSSG variables. This work deepens our understanding of discourse informativeness and macrostructure in PWAs and further develops an efficient tool for research and clinical use. Future research should investigate ways to expand MSSG analyses and to improve sensitivity and specificity.Aging can be seen as process characterized by accumulation of oxidative stress induced damage. Oxidative stress derives from different endogenous and exogenous processes, all of which ultimately lead to progressive loss in tissue and organ structure and functions. The oxidative stress theory of aging expresses itself in age-related diseases. Aging is in fact a primary risk factor for many diseases and in particular for cardiovascular diseases and its derived morbidity and mortality. Here we highlight the role of oxidative stress in age-related cardiovascular aging and diseases. We take into consideration the molecular mechanisms, the structural and functional alterations, and the diseases accompanied to the cardiovascular aging process.Time synchronization is an important issue in ad-hoc networks for reliable information exchange. The algorithms for time synchronization in ad-hoc networks are largely categorized into two types. One is based on a selection of a reference node, and the other is based on a consensus among neighbor nodes. These two types of methods are targeting static environments. However, synchronization errors among nodes increase sharply when nodes move or when incorrect synchronization information is exchanged due to the failure of some nodes. In this paper, we propose a synchronization technique for mobile ad-hoc networks, which considers both the mobility of nodes and the abnormal behaviors of malicious or failed nodes. Specifically, synchronization information extracted from a median of the time information of the neighbor nodes is quickly disseminated. This information effectively excludes the outliers, which adversely affect the synchronization of the networks. In addition, Kalman filtering is applied to reduce the synchronization error occurring in the transmission and reception of time information. The simulation results confirm that the proposed scheme has a fast synchronization convergence speed and low synchronization error compared to conventional algorithms.Biovermiculations are uniquely patterned organic rich sediment formations found on the walls of caves and other subterranean environments. These distinctive worm-like features are the combined result of physical and biological processes. The diverse microbial communities that inhabit biovermiculations may corrode the host rock, form secondary minerals, and produce biofilms that stabilize the sediment matrix, thus altering cave surfaces and contributing to the formation of these wall deposits. In this study, we incubated basalt, limestone, and monzonite rock billets in biovermiculation mixed natural community enrichments for 468-604 days, and used scanning electron microscopy (SEM) to assess surface textures and biofilms that developed over the course of the experiment. We observed alteration of rock billet surfaces associated with biofilms and microbial filaments, particularly etch pits and other corrosion features in olivine and other silicates, calcite dissolution textures, and the formation of secondary minerals including phosphates, clays, and iron oxides. We identified twelve distinct biofilm morphotypes that varied based on rock type and the drying method used in sample preparation. These corrosion features and microbial structures inform potential biological mechanisms for the alteration of cave walls, and provide insight into possible small-scale macroscopically visible biosignatures that could augment the utility of biovermiculations and similarly patterned deposits for astrobiology and life detection applications.Transportation of perishable foodstuff is an engineering and commercial activity ruled by an international Agreement (the ATP) that needs an updated regulation. Before addressing such updating, some analyses are required about the physics of the problem, in order to identify the optimum use of the available technologies and the advantages represented by new methodologies that could be enabled soon. this website It is worth pointing out that manufacturers of ATP equipment follow quite closely the prescriptions given by this Agreement. So, optimizing those prescriptions will generate a general optimization trend in this sector. In this paper, a coherent analysis on these subjects is presented, and a new coefficient is proposed for qualifying ATP units, and some new tests are also proposed for measuring that coefficient in an efficient and inexpensive way. These goals are justified in this paper as a contribution from basic physics to a particular domain of Thermal Engineering. The paper is intended to be a bridge from Science to Technology, which is a must to get optimum results in exploiting technical knowledge.