• Todd Coley posted an update 6 months ago

    Formation of tetrasubstituted C-C double bonds via olefin metathesis is considered very challenging for classical Ru-based complexes. In the hope to improve this condition, three ruthenium olefin metathesis catalysts bearing sterically reduced N-heterocyclic carbene (NHC) ligands with xylyl “arms” were synthesized, characterized using both computational and experimental techniques, and tested in a number of challenging reactions. The catalysts are predicted to initiate much faster than the analogue with mesityl N-substituents. We also foreboded the rotation of xylyl side groups at ambient temperature and the existence of all four atropoisomers in the solution, which was in agreement with experimental data. These catalysts exhibited high activity at relatively low temperatures (45-60 °C) and at reduced catalyst loadings in various reactions of sterically hindered alkenes, including complex polyfunctional substrates of pharmaceutical interest, such as yangonin precursors, chrysantemic acid derivatives, analogues of cannabinoid agonists, α-terpineol, and finally a thermally unstable peroxide.Herein, we report the rational, computationally-guided design of an iridium(I) catalyst system capable of enabling directed hydrogen isotope exchange (HIE) with the challenging sulfone directing group. Substrate binding energy was used as a parameter to guide rational ligand design via an in silico catalyst screen, resulting in a lead series of chelated iridium(I) NHC-phosphine complexes. Subsequent preparative studies show that the optimal catalyst system displays high levels of activity in HIE, and we demonstrate the labeling of a broad scope of substituted aryl sulfones. We also show that the activity of the catalyst is maintained at low pressures of deuterium gas and apply these conditions to tritium radiolabeling, including the expedient synthesis of a tritium-labeled drug molecule.Individuality in clinical gait analysis is often quantified by an individual’s kinematic deviation from the norm, but it is unclear how these deviations generalize across different walking speeds and ground slopes. Understanding individuality across tasks has important implications in the tuning of prosthetic legs, where clinicians have limited time and resources to personalize the kinematic motion of the leg to therapeutically enhance the wearer’s gait. This study seeks to determine an efficient way to predictively model an individual’s kinematics over a continuous range of slopes and speeds given only one personalized task at level ground. We were able to predict the kinematics of able-bodied individuals at a wide variety of conditions that were not specifically tuned. Applied to 10 human subjects, the individualization method reduced the RMSE between the model and subject’s kinematics over all tasks by an average of 2% (max 52%) at the ankle, 27% (max 59%) at the knee, and 45% (max 83%) at the hip. Our results indicate that knowing how an individual subject differs from the average subject at level ground alone is enough information to improve kinematic predictions across all tasks. This research offers a new method for personalizing robotic prosthetic legs over a variety of tasks without the need of an engineer, which could make these complex devices more clinically viable.We consider the problem of optimal reactive synthesis – compute a strategy that satisfies a mission specification in a dynamic environment, and optimizes a performance metric. We incorporate task-critical information, that is only available at runtime, into the strategy synthesis in order to improve performance. Existing approaches to utilising such time-varying information require online re-synthesis, which is not computationally feasible in real-time applications. In this paper, we pre-synthesize a set of strategies corresponding to candidate instantiations (pre-specified representative information scenarios). We then propose a novel switching mechanism to dynamically switch between the strategies at runtime while guaranteeing all safety and liveness goals are met. We also characterize bounds on the performance suboptimality. We demonstrate our approach on two examples – robotic motion planning where the likelihood of the position of the robot’s goal is updated in real-time, and an air traffic management problem for urban air mobility.The present work proposes a simple method for direct determination of Cu and Mn in commercial fruit juices and nectars by graphite furnace atomic absorption spectrometry (GF AAS). We analyzed samples of different flavors (orange, mango, passion fruit, peach, and grape) and brands of Brazilian commercial fruit juices and nectars. We also carried out a study to define a suitable temperature program and to optimize the calibration conditions. It was possible to determine Cu and Mn in the samples just after a simple dilution of samples with a 0.70 mol L-1 HNO3 solution, except in the case of grape juice. We compared the results obtained with the proposed method to those obtained after a traditional treatment based on acid digestion in a microwave oven, and no significant differences were observed (except for grape juice). The accuracy of the method was assessed through a recovery test, which provided recovery percentages in the range of 81-117%. Precision was always better than 8%, and the limits of quantification for Cu and Mn were 6 μg L-1 and 9 μg L-1, respectively. We analyzed twenty-two samples, and the concentrations of Cu and Mn were in the range of 24.1-321 μg L-1 and 116-3296 μg L-1, respectively. Statistical analysis using a two-way analysis of variance (ANOVA) at 95% confidence level showed that flavor and brand impacted on the concentration of the analytes in the samples. Among the samples analyzed, the grape juice presented the highest concentrations of both Cu and Mn.

    Cannabis use predicts psychosis in longitudinal studies, but it is difficult to infer causation. Some precursor variables predict both, including childhood trauma and adversity. Additionally, some of the desired effects of cannabis use resemble the symptoms of psychosis. It would be preferable to assess psychotomimetic or “unusual” experiences that include psychotic symptoms but without assuming pathology. Finally, it is possible that similar people are prone to psychosis and drawn to cannabis use, perhaps, because they are sensitive or attracted to unusual experiences. find more Schizotypy provides a trait measure of proneness to unusual experiences. The study aimed to examine cross-sectionally relationships between cannabis use, schizotypy, and unusual experiences whilst controlling for current trauma symptoms.

    A volunteer online sample (

     = 129, 64% women, predominantly students) who had used cannabis at least once was recruited. People who reported active effects of past trauma were excluded with a brief primary care posttraumatic stress disorder screen.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account