-
Foster Leach posted an update 6 months, 3 weeks ago
We conduct numerical experiments to demonstrate the superior performance of the proposed architecture in terms of its superresolution capability and estimation accuracy.Predators in nature grip their prey in different ways, which give innovational ideas of gripping approaches in industrial applications. Octopus performs flexible gripping with the help of vacuum grippers, suction cups, which inspired a new type of microgripper for biological sample micromanipulation. #link# The proposed gripper consists of a glass pipette and a pump driven by a step-motor. The step-motor is controlled with adaptive robust control to adjust the gripping pressure applied on the biological sample. A dynamic model is developed for the biological sample aiming for better deformation control performance. A visual detection algorithm is developed for data processing to identify the parameters in the dynamic model and the detection result of visual algorithm is also used as feedback of adaptive robust control, which diminishes the negative influence of parameter and model uncertainties. Zebrafish larva was used as the testing sample for experiment and the corresponding parameters were identified experimentally. The experimental results correlated well with the model predicted deformation curve and visual detection algorithm provided promising accuracy, which is less than 4 μm. Adaptive robust control provides fast and accuracy response in point-to-point deformation testing, and the average responding time is less than 30 s and the average error is no larger than 1 pixel.This article considers neural network (NN)-based adaptive finite-time resilient control problem for a class of nonlinear time-delay systems with unknown fault data injection attacks and actuator faults. In the procedure of recursive design, a coordinate transformation and a modified fractional-order command-filtered (FOCF) backstepping technique are incorporated to handle the unknown false data injection attacks and overcome the issue of “explosion of complexity” caused by repeatedly taking derivatives for virtual control laws. The theoretical analysis proves that the developed resilient controller can guarantee the finite-time stability of the closed-loop system (CLS) and the stabilization errors converge to an adjustable neighborhood of zero. The foremost contributions of this work include 1) by means of a modified FOCF technique, the adaptive resilient control problem of more general nonlinear time-delay systems with unknown cyberattacks and actuator faults is first considered; 2) different from most of the existing results, the commonly used assumptions on the sign of attack weight and prior knowledge of actuator faults are fully removed in this article. Finally, two simulation examples are given to demonstrate the effectiveness of the developed control scheme.Nonblind image deblurring is about recovering the latent clear image from a blurry one generated by a known blur kernel, which is an often-seen yet challenging inverse problem in imaging. Galicaftor is how to robustly suppress noise magnification during the inversion process. Recent approaches made a breakthrough by exploiting convolutional neural network (CNN)-based denoising priors in the image domain or the gradient domain, which allows using a CNN for noise suppression. The performance of these approaches is highly dependent on the effectiveness of the denoising CNN in removing magnified noise whose distribution is unknown and varies at different iterations of the deblurring process for different images. In this article, we introduce a CNN-based image prior defined in the Gabor domain. The prior not only utilizes the optimal space-frequency resolution and strong orientation selectivity of the Gabor transform but also enables using complex-valued (CV) representations in intermediate processing for better denoising. A CV CNN is developed to exploit the benefits of the CV representations, with better generalization to handle unknown noises over the real-valued ones. Combining our Gabor-domain CV CNN-based prior with an unrolling scheme, we propose a deep-learning-based approach to nonblind image deblurring. Extensive experiments have demonstrated the superior performance of the proposed approach over the state-of-the-art ones.There are two main categories of face sketch synthesis data- and model-driven. The data-driven method synthesizes sketches from training photograph-sketch patches at the cost of detail loss. The model-driven method can preserve more details, but the mapping from photographs to sketches is a time-consuming training process, especially when the deep structures require to be refined. We propose a face sketch synthesis method via regularized broad learning system (RBLS). The broad learning-based system directly transforms photographs into sketches with rich details preserved. Also, the incremental learning scheme of broad learning system (BLS) ensures that our method easily increases feature mappings and remodels the network without retraining when the extracted feature mapping nodes are not sufficient. Besides, a Bayesian estimation-based regularization is introduced with the BLS to aid further feature selection and improve the generalization ability and robustness. Various experiments on the CUHK student data set and Aleix Robert (AR) data set demonstrated the effectiveness and efficiency of our RBLS method. Unlike existing methods, our method synthesizes high-quality face sketches much efficiently and greatly reduces computational complexity both in the training and test processes.Dramatic imaging viewpoint variation is the critical challenge toward action recognition for depth video. To address this, one feasible way is to enhance view-tolerance of visual feature, while still maintaining strong discriminative capacity. Multi-view dynamic image (MVDI) is the most recently proposed 3-D action representation manner that is able to compactly encode human motion information and 3-D visual clue well. However, it is still view-sensitive. To leverage its performance, a discriminative MVDI fusion method is proposed by us via multi-instance learning (MIL). Specifically, the dynamic images (DIs) from different observation viewpoints are regarded as the instances for 3-D action characterization. After being encoded using Fisher vector (FV), they are then aggregated by sum-pooling to yield the representative 3-D action signature. Our insight is that viewpoint aggregation helps to enhance view-tolerance. And, FV can map the raw DI feature to the higher dimensional feature space to promote the discriminative power.