• Larson Mouridsen posted an update 6 months, 2 weeks ago

    EVO reduced the susceptibility to DSS-induced destruction of epithelial integrity and severe inflammatory response, and regulated the gut microbiota and metabolites. Fecal Microbiota Transplantation (FMT) alleviated DSS-induced colitis, increased the abundance of L. acidophilus and the level of acetate. Furthermore, gavaged with L. acidophilus reduced pro-inflammatory cytokines, promoted the increase of goblet cells and the secretion of antimicrobial peptides, regulated the ratio of Firmicutes/Bacteroidetes and increased the level of acetate. Our results indicated that EVO mitigation of DSS-induced colitis is associated with increased in L. acidophilus and protective acetate production, which may be a promising strategy for treating UC.The vascular endothelium is one of the first barriers encountered by drugs and xenobiotics, which, once administered, enter the blood stream and diffuse to all organs through blood vessels. The continuous exposure of endothelial cells to drugs and chemical compounds turns out to be a huge risk for the cardiovascular system, as these substances could compromise endothelial vitality and function and create irreparable, localized or systemic damages. For this reason, a special attention should be paid to the safety of developing drugs on the cardiovascular system. In this study we focused our attention on carbonic anhydrase (CA)-IX inhibitors. CA-IX is an enzyme over-expressed in tumor cells in response to hypoxia, which is involved in pH control of the neoplastic mass microenvironment and in tumor progression. Specifically, we evaluated the safety on human umbilical vein endothelial cells (HUVEC) of CA-IX inhibitor AA-06-05, compared to its lead compound SLC-0111, for which the efficacy on tumor cells has already been proven. In this analysis we detected an impairment in viability and mitochondrial metabolism of HUVECs treated with AA-06-05 (but not with SLC-0111) in the concentration range 1-10 μM. These data were accompanied by an increase in the expression of the cell cycle negative regulator, p21, and a down-regulation of the pro-survival proteins ERK1/2 and AKT, both in their phosphorylated and total forms. this website The data obtained document the likelihood for CA-IX inhibitor AA-06-05 to be developed as new anticancer drug, but a particular attention should be paid to its potential side effects on endothelial cells due to its targeting on other CA isoforms as CA-I, with ubiquitous localization and physiological significance.The vascular endothelial growth factor receptor-1 (VEGFR-1) is a membrane receptor for VEGF-A, placenta growth factor (PlGF) and VEGF-B that plays a crucial role in melanoma invasiveness, vasculogenic mimicry and tumor-associated angiogenesis. Furthermore, activation of VEGFR-1 is involved in the mobilization of myeloid progenitors from the bone marrow that infiltrate the tumor. Myeloid-derived suppressor cells and tumor-associated macrophages have also been involved in tumor progression and resistance to cancer treatment with immune checkpoint inhibitors (ICIs). We have recently demonstrated that the anti-VEGFR-1 monoclonal antibody (mAb) D16F7 developed in our laboratories is able to inhibit melanoma growth in preclinical in vivo models and to reduce monocyte/macrophage progenitor mobilization and tumor infiltration by myeloid cells. Aim of the study was to investigate whether the anti-VEGFR-1 mAb D16F7 affects the activity of protumoral M2 macrophages in vitro in response to PlGF and inhibits the recruitmetumor infiltration by pro-tumoral macrophages and for improving the efficacy of immunotherapy with ICIs.Aberrant activation of Wnt signaling plays a critical role in the initiation and progression of colorectal cancer (CRC). Chlorquinaldol (CQD) is a topical antimicrobial agent used to treat skin infections. Little is known about the anticancer activity of CQD and its underlying mechanisms. In this study, CQD was demonstrated to inhibit Wnt/β-catenin signaling through targeting the downstream part of this pathway. The results showed that CQD could inhibit the acetylation of β-catenin and disrupt the interaction of β-catenin with T-cell factor 4 (TCF4), leading to reduced binding of β-catenin to the promoters of Wnt target genes and downregulation of the expression of these target genes. Moreover, treatment with CQD suppressed the proliferation, migration, invasion and stemness of CRC cells. In APCmin/+ mice and CRC cell xenografts, administration of CQD suppressed tumor growth and the expression of Wnt target genes c-Myc and Leucine-rich G protein-coupled receptor-5 (LGR5). These results strongly suggest that CQD may be a promising therapeutic agent in the treatment of CRC.The Mycobacterium tuberculosis Beijing genotype is a clinically and epidemiologically important lineage further subdivided into ancient/ancestral and modern strains. In our previous study in western Siberia, we identified VNTR-based clusters within the early ancient sublineage of the Beijing genotype characterized by an unexpectedly high rate of extensive drug resistance (XDR). Here, we analyzed next generation sequencing data in order to gain insight into genomic signatures underlying drug resistance of these strains. In total, 184 genomes of the Beijing early ancient sublineage from Russia (16), China (15), Japan (36), Korea (25), Vietnam (18), Thailand (73), USA (1 isolate) were used for phylogenetic analysis. The drug-resistant profile was deduced genotypically. The Russian isolates were distributed in two clusters and were all drug resistant, mainly pre-XDR and XDR. The largest of these clusters included only Russian isolates from remote locations in both Asian and European parts of the country. All isolates had a quadruple drug resistance (to isoniazid, rifampin, ethambutol and streptomycin) due to the 6-mutation signature (KatG Ser315Thr, KatG Ile335Val, RpoB Ser450Leu, RpoC Asp485Asn, EmbB Gln497Arg, RpsL Lys43Arg). In most samples, it was complemented with additional and different pncA, gyrA, rrs mutations leading to the pre-XDR/XDR genotype. Phylogenomic analysis suggests a distant origin of this Russian resistant cluster in the early 1970s but location and circumstances are yet to be clarified.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account