-
Baird Wind posted an update 6 months, 2 weeks ago
In order to address this idea, genetically different cardiac fibroblasts were embedded in 3D collagen matrices consisting of collagen isolated from either non-diabetic of diabetic mice. Fibroblasts were treated with EPAC and/or exogenous AGEs, which was followed by assessment of matrix contraction, protein expression (α-SMA, SOD-1, and SOD-2), and hydrogen peroxide production. The results showed Rap1a overlaps the AGE/RAGE cascade to increase the myofibroblast population and generation of ROS production. The increase in myofibroblasts and oxidative stress appeared to contribute to increased matrix contraction, which was further exacerbated by diabetic conditions. Based off these results, we determined that Rap1a was essential in mediating the response of cardiac fibroblasts to AGEs within diabetic collagen.
The assessment of antibody responses to severe acute respiratory syndrome coronavirus-2 is potentially confounded by exposures to flaviviruses. The aims of the present research were to determine whether anti-dengue antibodies affect the viral load and the detection of anti-coronavirus nucleocapsid (N)-protein antibodies in coronavirus infectious disease 2019 (COVID-19) in Bangladesh.
Viral RNA was evaluated in swab specimens from 115 COVID-19 patients by real-time reverse transcription polymerase chain reaction (rT-PCR). The anti-N-protein antibodies, anti-dengue virus E-protein antibodies and the dengue non-structural protein-1 were determined in serum from 115 COVID-19 patients, 30 acute dengue fever pre-COVID-19 pandemic and nine normal controls by ELISA.
The concentrations of viral RNA in the nasopharyngeal; Ct median (95% CI); 22 (21.9-23.3) was significantly higher than viral RNA concentrations in oropharyngeal swabs; and 29 (27-30.5)
< 0.0001. Viral RNA concentrations were not correlated with-dengue IgG levels. The anti-nucleocapsid antibodies were IgA 27% positive and IgG 35% positive at days 1 to 8 post-onset of COVID-19 symptoms versus IgA 0% and IgG 0% in dengue patients,
< 0.0001. The levels of anti- nucleocapsid IgA or IgG versus the levels of anti-dengue IgM or IgG revealed no significant correlations.
Viral RNA and anti-nucleocapsid antibodies were detected in COVID-19 patients from dengue-endemic regions of Bangladesh, independently of the dengue IgG levels.
Viral RNA and anti-nucleocapsid antibodies were detected in COVID-19 patients from dengue-endemic regions of Bangladesh, independently of the dengue IgG levels.Organic dyes are extensively used in many industrial sectors, and their uncontrolled disposal into wastewaters raises serious concerns for environmental and human health. Due to the large variety of such pollutants, an effective remediation strategy should be characterized by a broad-spectrum efficacy. A promising strategy is represented by the combination of different adsorbent materials with complementary functionalities to develop composite materials that are expected to remove different contaminants. In the present work, a broad-spectrum adsorbent was developed by embedding zeolite 13X powder (ZX) in a chitosan (CS) aerogel (11 by weight). The CS-ZX composite adsorbent removes both anionic (indigo carmine, IC) and cationic (methylene blue, MB) dyes effectively, with a maximum uptake capacity of 221 mg/g and 108 mg/g, respectively. In addition, the adsorption kinetics are rather fast, with equilibrium conditions attained in less than 2 h. The composite exhibits good mechanical properties in both dry and wet state, which enables its handling for reusability purposes. In this regard, preliminary tests show that the full restoration of the IC removal ability over three adsorption-desorption cycles is achieved using a 0.1 M NaOH aqueous solution, while a 1 M NaCl aqueous solution allows one to preserve >60% of the MB removal ability.Gastric cancer is a malignant tumor with a high incidence and mortality rate worldwide. Nevertheless, anticancer drugs that can be used for gastric cancer treatment are limited. Therefore, it is important to develop targeted anticancer drugs for the treatment of gastric cancer. Selleckchem Tetramisole Dehydroabietic acid (DAA) is a diterpene found in tree pine. Previous studies have demonstrated that DAA inhibits gastric cancer cell proliferation by inducing apoptosis. However, we did not know how DAA inhibits the proliferation of gastric cancer cells through apoptosis. In this study, we attempted to identify the genes that induce cell cycle arrest and cell death, as well as those which are altered by DAA treatment. DAA-regulated genes were screened using RNA-Seq and differentially expressed genes (DEGs) analysis in AGS cells. RNA-Seq analysis revealed that the expression of survivin, an apoptosis inhibitor, was significantly reduced by DAA treatment. We also confirmed that DAA decreased survivin expression by RT-PCR and Western blotting analysis. In addition, the ability of DAA to inhibit survivin was compared to that of YM-155, a known survivin inhibitor. DAA was found to have a stronger inhibitory effect in comparison with YM-155. DAA also caused an increase in cleaved caspase-3, an apoptosis-activating protein. In conclusion, DAA is a potential anticancer agent for gastric cancer that inhibits survivin expression.The interfacial structures and interfacial bonding characteristics between graphene and matrix in graphene-reinforced Al2O3-WC matrix ceramic composite prepared by two-step hot pressing sintering were systematically investigated. Three interfacial structures including graphene-Al2O3, graphene-Al2OC and graphene-WC were determined in the Al2O3-WC-TiC-graphene composite by TEM. The interfacial adhesion energy and interfacial shear strength were calculated by first principles, and it has been found that the interfacial adhesion energy and interfacial shear strength of the graphene-Al2OC interface (0.287 eV/nm2, 59.32 MPa) were far lower than those of graphene-Al2O3 (0.967 eV/nm2, 395.77 MPa) and graphene-WC (0.781 eV/nm2, 229.84 MPa) interfaces. Thus, the composite with the strong and weak hybrid interfaces was successfully obtained, which was further confirmed by the microstructural analysis. This interfacial structure could induce strengthening mechanisms such as load transfer, grain refinement, etc., and toughening mechanisms such as crack bridging, graphene pull-out, etc.