-
Ottosen Cormier posted an update 6 months, 1 week ago
g. maturity index) were monitored over a period of 8-10 weeks. The response of the nematode communities strongly varied between soil types, and these differences were more pronounced for Zn than for pyrene. https://www.selleckchem.com/ Interestingly, the structure of the respective native nematode communities was shown to play a larger role for explaining the varying toxic effects than soil properties governing the bioavailability of the spiked chemicals. We demonstrated that exposure of natural nematode communities in their original soil matrix to the metal zinc and to pyrene under climatically highly controlled conditions resulted in quantitatively and qualitatively distinct responses. Upon comparison of various community indices, the maturity index was shown to be the most sensitive toxicity endpoint for all tested soils and chemicals.Climate change will modify the spatiotemporal distribution of water resources in the future. Snow availability in alpine systems plays an important role for water dependent ecosystems, water demand supply, tourism, and hydropower. The assessment of the impact of climate change (and its uncertainty) on snow is a key subject in determining suitable adaptation strategies in these systems. In this paper, we propose a new methodology for assessing the impact of climate change on snow cover areas (SCAs). We have developed the Monte Carlo method analysis to combine several approaches to generate multiple input series and propagate them within a previously calibrated SCA cellular automata model. This generates potential future local scenarios from regional climate models. These scenarios are used to generate multiple series by using a stochastic weather generator. The methodology also includes an approach to correct the outputs bias of the stochastic weather generators when it is needed. Finally, the historical and the corrected multiple future weather series are used to simulate the impact on the SCA by using a cellular automata model. It is a novel approach that allows us to quantify the impact and uncertainty of climate change on the SCA. The methodology has been applied to the Sierra Nevada (southern Spain), which is the most southern alpine mountain range in Europe. In the horizon 2071-2100, under the RCP 8.5 emission scenario, we estimate mean reductions of SCA that will move from 42 to 66% from December to February. The reductions are higher for the rest of the year (from March to May reductions of between 47 and 95% and from September to November reductions of between 54 and 100%). These SCA changes may be roughly equivalent to an elevation shift of snow of around 400 m.Phosphates and organophosphorus cause environmental pollution, and excessive phosphate leads to water eutrophication. Glyphosate, an organophosphorus herbicide, harms the environment and human health. In this study, regenerable magnetic AL/Fe3O4/La(OH)3 adsorbents were developed by modifying Fe3O4 and La(OH)3 on aminated lignin (AL) for phosphate and glyphosate removal. The adsorption capacity for phosphate and glyphosate reached 60.36 mg g-1 and 83.87 mg g-1 when the initial concentrations were 150 mg L-1 and 250 mg L-1, respectively. The thermodynamic data showed that adsorption is a spontaneous and endothermic process. Adsorption can be applied at pH values ranging from 3 to 11 and is more suitable under acidic conditions. Fe3O4 and La(OH)3 both enhanced the adsorption capacities of phosphate and glyphosate. Phosphate and glyphosate compete slightly when coexisting in the adsorption process at low concentrations. Due to the magnetic properties of Fe3O4, the adsorbents can be separated rapidly and effectively with an external magnetic field. 89% adsorption capacity remained after four adsorption-desorption recycles. Thus, AL/Fe3O4/La(OH)3 shows potential for phosphate and glyphosate removal as an effective and reusable adsorbent.Eco-hydrological processes affect the chemical weathering carbon sink (CS) of rocks. However, due to data quality limitations, the magnitude of the CS of rocks and their responses to eco-hydrological processes are not accurately understood. Therefore, based on Global Erosion Model for CO2 fluxes (GEM-CO2 model), hydrological site data, and multi-source remote sensing data, we produced a 0.05° × 0.05° resolution dataset of CS for 11 types of rocks from 2001 to 2018. The results show that the total amount of CS of global rocks is 0.32 ± 0.02 Pg C, with an average flux of 2.7 t C km-2 yr-1, accounting for 53% and 3% of the “missing” carbon sink and fossil fuel emissions, respectively. This is 23% higher than previous research results, which may be due to the increased resolution. Although about 60% of the CS of global rocks are in a stable state, there are obvious differences among rocks. For example, the CS of carbonate rocks exhibited a significant increase (0.30 Tg C/yr), while the CS of siliceous clastic sedimentary rocks exhibited a significant decrease (-0.06 Tg C/yr). Although temperature is an important factor affecting the CS, the proportion of soil moisture in arid and temperate climate zones is higher (accounting for 24%), which is 3.6 times that of temperature. Simulations based on representative concentration pathways scenarios indicate that the global CS of rocks may increase by about 28% from 2050 to 2100. In short, we produced a set of high-resolution datasets for the CS of global rocks, which makes up for the lack of datasets in previous studies and improves our understanding of the magnitude and spatial pattern of the CS and its responses to eco-hydrological processes.Limited work has been conducted on trace metal(loid) exchange between sediment, water, feed, and shrimp, particularly in estuarine aquaculture environments. To identify metal(loid) sources and the processes controlling bioaccumulation in shrimp, we analyzed paired aquaculture water, sediment, and shrimp samples collected in Southwest Bangladesh in the late dry season (May), as well as several common artificial feeds. Additionally, we analyzed sediment extract samples from 24-hour laboratory batch experiments as an analogue for aquaculture pond sediment porewater to examine element mobilization from pond sediment. Weak correlations between element concentrations in extracts, pond water, and bulk sediment indicate equilibrium with sediment was not achieved in extract experiments or ponds, and that sediment composition has little influence on pond water or shrimp composition. Aquaculture shrimp metal(loid) concentrations were similar to artificial feed but not pond sediment or pond water, suggesting that shrimp composition is mostly influenced by diet.