• Hurley Lowry posted an update 6 months ago

    To directly compare robotic-versus fluoroscopy-guided percutaneous pedicle screw (PPS) placement in thoracolumbar spine trauma with a focus on clinically acceptable pedicle screw accuracy and facet joint violation (FJV).

    A retrospective chart review assessed 37 trauma patients undergoing percutaneous thoracic and/or lumbar fixation. Postoperative computed tomography images were reviewed by authors blinded to surgical technique who assessed pedicle screw trajectory accuracy and FJV frequency.

    Seventeen patients underwent placement of 143 PPS with robotic assistance (robot group), compared with 20 patients receiving 149 PPS using fluoroscopy assistance (control group). Overall, the robot cohort demonstrated decreased FJV frequency of 2.8% versus 14.8% in controls (P= 0.0003). When further stratified by level of surgery (i.e., upper thoracic, lower thoracic, lumbar spine), the robot group had FJV frequencies of 0%, 3.2%, and 3.7%, respectively, compared with 17.7% (P= 0.0209), 14.3% (P= 0.0455), and 11.9% ithin the thoracic spine region. Use of robotic technology may improve radiographic outcomes for a subset of patients or spine surgeries.As biomaterial advances make headway into lightweight radiation protection, wound healing dressings, and microbe resistant surfaces, a relevance to human space exploration manifests itself. SR59230A To address the needs of the human in space, a knowledge of the space environment becomes necessary. Both an understanding of the environment itself and an understanding of the physiological adaptations to that environment must inform design parameters. The space environment permits the fabrication of novel biomaterials that cannot be produced on Earth, but benefit Earth. Similarly, designing a biomaterial to address a space-based challenge may lead to novel biomaterials that will ultimately benefit Earth. This review describes several persistent challenges to human space exploration, a variety of biomaterials that might mitigate those challenges, and considers a special category of space biomaterial. STATEMENT OF SIGNIFICANCE This work is a review of the major human and environmental challenges facing human spaceflight, and where biomaterials may mitigate some of those challenges. The work is significant because a broad range of biomaterials are applicable to the human space program, but the overlap is not widely known amongst biomaterials researchers who are unfamiliar with the challenges to human spaceflight. Additionaly, there are adaptations to microgravity that mimic the pathology of certain disease states (“terrestrial analogs”) where treatments that help the overwhelmingly healthy astronauts can be applied to help those with the desease. Advances in space technology have furthered the technology in that field on Earth. By outlining ways that biomaterials can promote human space exploration, space-driven advances in biomaterials will further biomaterials technology.One of the key elements in tissue engineering is to design and fabricate scaffolds with tissue-like properties. Among various scaffold fabrication methods, textile technology has shown its unique advantages in mimicking human tissues’ properties such as hierarchical, anisotropic, and strain-stiffening properties. As essential components in textile technology, textile patterns affect the porosity, architecture, and mechanical properties of textile-based scaffolds. However, the potential of various textile patterns has not been fully explored when fabricating textile-based scaffolds, and the effect of different textile patterns on scaffold properties has not been thoroughly investigated. This review summarizes textile technology development and highlights its application in tissue engineering to facilitate the broader application of textile technology, especially various textile patterns in tissue engineering. The potential of using different textile methods such as weaving, knitting, and braiding to mimic propnted, hoping to facilitate new breakthroughs of textile-based tissue engineering.Epstein-Barr virus (EBV) load monitoring after allogeneic hematopoietic stem cell transplantation (HSCT) enables earlier detection of EBV replication and often serves as a trigger for preemptive therapies aimed at reducing EBV-related diseases. Our institutional strategy is to treat patients with clinical signs of EBV-related disease accompanied by a rising viral load, rather than to intervene based solely on viral load. This affords an opportunity to study the natural history of EBV replication and to assess whether our strategy reduces overtreatment without compromising outcomes. The objectives of the present study were to assess the natural history of untreated EBV replication in patients who underwent an alemtuzumab-based allogeneic HSCT and to examine whether our clinical strategy reduced overtreatment without compromising patient outcomes. In this retrospective single-center observational study of 515 consecutive patients (age ≥18 years) undergoing T cell-depleted allogeneic HSCT incorporating alemtuzumve predictive value of EBV load for disease was higher in the unrelated donor cohort but remained less then 75% regardless of EBV threshold (57.1% to 72.7%). The cumulative incidence of EBV-related disease in our study (3.9%) is comparable to that reported in other studies incorporating alemtuzumab, and our clinical strategy reduced overtreatment in this patient population. PCR-based surveillance strategies have limitations, as reflected in the relatively low sensitivity of the assay coupled with the low positive predictive value, which may influence the potential choice of a threshold for preemptive intervention. We conclude that it remains unclear whether treatment based on a rising EBV viral load alone provides superior overall results to treatment based on the development of clinical signs of EBV-related disease in the context of a rising viral load.To investigate the mechanisms of the defense system and antioxidant defense system during chicken embryo development, protein profiling of liver tissues in chicken embryo at Day 16 and Day 20 was conducted. TMT was used to analyze the liver tissues proteomes with significantly different activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in chicken embryo. PRM was operated to validate the target differentially abundant proteins (DAPs) using the same samples. The result showed a total of 34 DAPs were identified. Among these, 9 were upregulated and 25 were downregulated. The screened DAPs strictly related to regulation of oxidoreductase activity (DDO and GAS2L1), response to stress (ERAD2 and SAA), immune system process (GAL3 and PDCD4), and lipid regulation and metabolism (ETNPPL, APOV1, LIPM, and APOA4). These analyses indicated that the antioxidant enzyme activity of chicken embryo is regulated through different pathways. Correlation analysis revealed a linear relationship between mRNA and protein expression and 12 genes (ORM1, C8B, KPNA2, CA4, C1S, SULT1B, ETNPPL, ERCC6L, DDO, SERPINF1, VAT1L, and APOA4) were detected to be differently expressed both at mRNA and protein levels.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account