• Bynum Troelsen posted an update 6 months, 1 week ago

    RNA-binding proteins (RBPs) interacting with target RNAs play essential roles in RNA metabolism at the post-transcription level. Perturbations of RBPs can accelerate cancer development and cause dysregulation of the immune cell function and activity leading to evade immune destruction of cancer cells. However, few studies have systematically analyzed the potential prognostic value and functions of RBPs in squamous cell carcinoma of head and neck (SCCHN). Here, for the first time, we comprehensively identified 92 differentially expressed RBPs from The Cancer Genome Atlas (TCGA) database. In the training set, a prognosis risk model was constructed with six RBPs, including NCBP2, MKRN3, MRPL47, AZGP1, IGF2BP2, and EZH2, and validated by the TCGA test set, the TCGA all set, and the GEO data set. In addition, the risk score was related to the clinical stage, T classification, and N classification. Furthermore, the high-risk score was significantly correlated with immunosuppression, and low expression of EZH2 and AZGP1 and high expression of IGF2BP2 were the main factors. Thus, the risk model may serve as a prognostic signature and offer highlights for individualized immunotherapy in SCCHN patients.Mixed cropping has been suggested as a resource-efficient approach to meet high produce demands while maintaining biodiversity and minimizing environmental impact. Current breeding programs do not select for enhanced general mixing ability (GMA) and neglect biological interactions within species mixtures. Clear concepts and efficient experimental designs, adapted to breeding for mixed cropping and encoded into appropriate statistical models, are lacking. Thus, a model framework for GMA and SMA (specific mixing ability) was established. Results of a simulation study showed that an incomplete factorial design combines advantages of two commonly used full factorials, and enables to estimate GMA, SMA, and their variances in a resource-efficient way. This model was extended to the Producer (Pr) and Associate (As) concept to exploit additional information based on fraction yields. It was shown that the Pr/As concept allows to characterize genotypes for their contribution to total mixture yield, and, when relating to plant traits, allows to describe biological interaction functions (BIF) in a mixed crop. Incomplete factorial designs show the potential to drastically improve genetic gain by testing an increased number of genotypes using the same amount of resources. The Pr/As concept can further be employed to maximize GMA in an informed and efficient way. selleckchem The BIF of a trait can be used to optimize species ratios at harvest as well as to extend our understanding of competitive and facilitative interactions in a mixed plant community. This study provides an integrative methodological framework to promote breeding for mixed cropping.The ripening of fleshy fruits is coupled with the degradation of both chlorophyll and cell walls, as well as changes in the metabolism of phenylpropanoids, flavonoids, starch/sucrose, and carotenoids. These processes are controlled by phytohormones and other factors, including abscisic acid (ABA), ethylene, auxin, polyamines, sugar, and reactive oxygen species. The ripening of climacteric fruits is controlled by ethylene and non-climacteric fruit ripening is regulated mainly by ABA. Also, ABA and ethylene may interact in both types of fruit ripening. ABA concentrations in fleshy fruits are regulated in response to developmental and environmental cues and are controlled by the relative rates of ABA biosynthesis and catabolism, the former mainly via 9-cis-epoxycarotenoid dioxygenases (NCEDs) and β-glucosidases and the latter via ABA 8′-hydroxylases (CYP707As) and β-glycosyltransferases. In strawberry fruit ripening, ABA is perceived via at least two receptors, Pyrabactin resistance (PYR)/PYR-like (PYL) and putative abscisic acid receptor (ABAR), which are linked separately to the conserved signaling pathway ABA-FaPYR1-FaABIl-FaSnRK2 and the novel signaling pathway ABA-FaABAR-FaRIPK1-FaABI4. Downstream signaling components include important transcription factors, such as AREB (ABA responsive element binding protein)/ABF (ABRE binding factors ABA responsive factor), ethylene response factor (ERF), and V-myb Myeloblastosis viral oncogene homolog (MYB), as well as ripening-related genes. Finally, a comprehensive model of ABA linked to ethylene, sugar, polyamines, auxin and reactive oxygen species in the regulation of strawberry fruit ripening is proposed. Next, new integrated mechanisms, including two ABA signaling pathways, ABA and ethylene signaling pathways, and ABA/ethylene to other phytohormones are interesting and important research topics in ripening, especially in non-climacteric fruits.Functional traits determine how species interact with their abiotic and biotic environment. In turn, functional diversity describes how assemblages of species as a whole are adapted to their environment, which also determines how they might react to changing conditions. To fully understand functional diversity, it is fundamental to (a) disentangle the influences of environmental filtering and species richness from each other, (b) assess if the trait space saturates at high levels of species richness, and (c) understand how changes in species numbers affect the relative importance of the trait niche expansion and packing. In the present study, we determined functional diversity of fern assemblages by describing morphological traits related to resource acquisition along four tropical elevational transects with different environmental conditions and species richness. We used several functional diversity indices and their standardized effect size to consider different aspects of functional diversity. We contrasted these aspects of functional diversity with climate data and species richness using linear models and linear mixed models. Our results show that functional morphological trait diversity was primarily driven by species richness and only marginally by environmental conditions. Moreover, increasing species richness contributed progressively to packing of the morphological niche space, while at the same time decreasing morphological expansion until a saturation point was reached. Overall, our findings suggest that the density of co-occurring species is the fundamental driving force of morphological niche structure, and environmental conditions have only an indirect influence on fern resource acquisition strategies.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account