-
Pedersen Sampson posted an update 6 months, 3 weeks ago
Moreover, the hydrogels are rich in catechol groups and capable of adhering to various surfaces, meeting adhesive demand of large movement for special areas. With the above merits, the hydrogels demonstrate less inflammatory response and faster healing speed for in vivo wound healing on rats. Therefore, the multifunctional hydrogels show stable covering, little displacement, long-lasting antibacteria, and fast wound healing, demonstrating promise in wound dressing.Although epitaxial strain imparted by lattice mismatch between a film and the underlying substrate has led to distinct structures and emergent functionalities, the discrete lattice parameters of limited substrates, combined with strain relaxations driven by film thickness, result in severe obstructions to subtly regulate electro-elastic coupling properties in perovskite ferroelectric films. Here a practical and universal method to achieve highly strained phases with large tetragonal distortions in Pb-based ferroelectric films through synergetic effects of moderately (≈1.0%) misfit strains and laser fluences during pulsed laser deposition process is demonstrated. The phase possesses unexpectedly large Poisson’s ratio and negative thermal expansion, and concomitant enhancements of spontaneous polarization (≈100 µC cm-2) and Curie temperature (≈800 °C), 40% and 75% larger than that of bulk counterparts, respectively. This strategy efficiently circumvents the long-standing issue of limited numbers of discrete substrates and enables continuous regulations of exploitable lattice states in functional oxide films with tightly elastic coupled performances beyond their present levels.Despite the huge importance of friction in regulating movement in all natural and technological processes, the mechanisms underlying dissipation at a sliding contact are still a matter of debate. Attempts to explain the dependence of measured frictional losses at nanoscale contacts on the electronic degrees of freedom of the surrounding materials have so far been controversial. Here, it is proposed that friction can be explained by considering the damping of stick-slip pulses in a sliding contact. Based on friction force microscopy studies of La(1- x )Sr x MnO3 films at the ferromagnetic-metallic to a paramagnetic-polaronic conductor phase transition, it is confirmed that the sliding contact generates thermally-activated slip pulses in the nanoscale contact, and argued that these are damped by direct coupling into the phonon bath. Electron-phonon coupling leads to the formation of Jahn-Teller polarons and to a clear increase in friction in the high-temperature phase. There is neither evidence for direct electronic drag on the atomic force microscope tip nor any indication of contributions from electrostatic forces. This intuitive scenario, that friction is governed by the damping of surface vibrational excitations, provides a basis for reconciling controversies in literature studies as well as suggesting possible tactics for controlling friction..Organ-on-a-chip technology promises to revolutionize how pre-clinical human trials are conducted. Engineering an in vitro environment that mimics the functionality and architecture of human physiology is essential toward building better platforms for drug development and personalized medicine. However, the complex nature of these devices requires specialized, time consuming, and expensive fabrication methodologies. Alternatives that reduce design-to-prototype time are needed, in order to fulfill the potential of these devices. read more Here, a streamlined approach is proposed for the fabrication of organ-on-a-chip devices with incorporated microactuators, by using an adaptation of xurography. This method can generate multilayered, membrane-integrated biochips in a matter of hours, using low-cost benchtop equipment. These devices are capable of withstanding considerable pressure without delamination. Furthermore, this method is suitable for the integration of flexible membranes, required for organ-on-a-chip applications, such as mechanical actuation or the establishment of biological barrier function. The devices are compatible with cell culture applications and present no cytotoxic effects or observable alterations on cellular homeostasis. This fabrication method can rapidly generate organ-on-a-chip prototypes for a fraction of cost and time, in comparison to conventional soft lithography, constituting an interesting alternative to the current fabrication methods.Although antimony selenoiodide (SbSeI) exhibits a suitable bandgap as well as interesting physicochemical properties, it has not been applied to solar cells. Here the fabrication of SbSeI solar cells is reported for the first time using multiple spin-coating cycles of SbI3 solutions on Sb2Se3 thin layer, which is formed by thermal decomposition after depositing a single-source precursor solution. The performance exhibits a short-circuit current density of 14.8 mA cm-2, an open-circuit voltage of 473.0 mV, and a fill factor of 58.7%, yielding a power conversion efficiency (PCE) of 4.1% under standard air mass 1.5 global (AM 1.5 G, 100 mW cm-2). The cells retain ≈90.0% of the initial PCE even after illuminating under AM 1.5G (100 mW cm-2) for 2321 min. Here, a new approach is provided for combining selenide and iodide as anions, to fabricate highly efficient, highly stable, green, and low-cost solar cells.Photocatalysis is one potential solution to the energy and environmental crisis and greatly relies on the development of the catalysts. Niobium pentoxide (Nb2O5), a typically nontoxic metal oxide, is eco-friendly and exhibits strong oxidation ability, and has attracted considerable attention from researchers. Furthermore, unique Lewis acid sites (LASs) and Brønsted acid sites (BASs) are observed on Nb2O5 prepared by different methods. Herein, the recent advances in the synthesis and application of Nb2O5-based photocatalysts, including the pure Nb2O5, doped Nb2O5, metal species supported on Nb2O5, and other composited Nb2O5 catalysts, are summarized. An overview is provided for the role of size and crystalline phase, unsaturated Nb sites and oxygen vacancies, LASs and BASs, dopants and surface metal species, and heterojunction structure on the Nb2O5-based catalysts in photocatalysis. Finally, the challenges are also presented, which are possibly overcome by integrating the synthetic methodology, developing novel photoelectric characterization techniques, and a profound understanding of the local structure of Nb2O5.