-
Solis Tolstrup posted an update 6 months ago
nsistent differences among individuals, provides potential for evolutionary adaptation. Ultimately, our study highlights that linking environmental and host microbiotas may help unravelling immunological variation within and potentially among species, and together these efforts will advance the integration of microbial ecology and ecological immunology.
We show that microbes in the surroundings of terrestrial vertebrates can influence immune function and host-associated microbiota dynamics over relatively short time scales. We suggest that covariation between immune indices and cloacal microbiota, in addition to large and consistent differences among individuals, provides potential for evolutionary adaptation. Ultimately, our study highlights that linking environmental and host microbiotas may help unravelling immunological variation within and potentially among species, and together these efforts will advance the integration of microbial ecology and ecological immunology.
Pupfishes frequently enter paradoxical anaerobism in response to endogenously produced or exogenously supplied ethanol in a dose-dependent manner. To decipher the role of the gut microbiota in ethanol-associated paradoxical anaerobism, gut microbial communities were depleted using a cocktail of antibiotics and profiled using 16S rRNA gene sequencing.
Compared to the control group (n = 12), microbiota-depleted fish (n = 12) spent more time in paradoxical anaerobism. Our analysis indicated that the bacterial phyla Proteobacteria, Fusobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Patescibacteria, and Dependentiae dominated the pupfish gut, which is consistent with other fish gut microbiota. Although the gut microbial communities with and without antibiotic treatment were similarly diverse, they were distinct and the greatest contribution to the dissimilarity (27.38%) was the common fish commensal Cetobacterium.
This study reports the first characterization of gut microbial communities of pupfish andefore regulates the transition from paradoxical anaerobism to aerobic respiration in fish. Given the wide distribution and abundance of Cetobacterium in warm-water fishes, this process may be of broad importance, and suggests that the microbiome be carefully considered for both conservation and aquaculture.
The dam is considered an important source of microbes for the calf; consequently, the development of calf microbiota may vary with farming system due to differences between the contact the calf has with the dam. The objective of this study was to characterise the early changes in the composition of oral and faecal microbiota in beef and dairy calves (N= 10) using high-throughput sequencing of the 16S rRNA gene. The microbiota of calves was compared to selected anatomical niches on their dams which were likely to contribute to the vertical transfer of microbes.
A total of 14,125 amplicon sequence variants (ASVs) were identified and taxonomically assigned. The oral microbiota of calves and their dams were composed of more similar microbes after the first 4 weeks of life than immediately after calving. Selleckchem Almorexant The faecal microbiota of four-week old calves was composed of microbes which were more similar to those found in the oral microbiota of calves and adult cows than the faecal microbiota of adult cows. Specific airy animals.
We did not observe any marked differences in the maturation of the oral and faecal microbiota between beef or dairy calves, despite dairy calves having very limited contact with their dam. This suggests the development of gastrointestinal microbiota in calves may not be affected by continued vertical transmission of microbes from the dam. Although the calf faecal microbiota changed over the first four-weeks of life, it was composed of microbes which were phylogenetically closer to those in the oral microbiota of calves and adult cows than the faeces of adult cows. There was little evidence of persistent microbial seeding of the calf faeces from anatomical niches on the cow at calving in either beef or dairy animals.
Dietary yeast inclusions in a pig diet may drive changes both in gut bacterial composition and bacterial functional profile. This study investigated the effect of Cyberlindnera jadinii as a protein to replace 40% of the conventional proteins in a diet for weanling pigs on the microbiota in the small and large intestine, colonic short-chain fatty acid concentration, and colonic histopathology parameters. Seventy-two pigs weaned at 28 days of age were randomly assigned to either a control or a C. jadinii-based diet and followed for 2 weeks.
Compared with the controls, higher numbers of cultivable lactic acid-producing bacteria in the small and large intestine were registered in the yeast group. Alpha and beta bacterial diversity were different between the diet groups with lower alpha-diversity and distinct bacterial composition in the large intestine in the yeast group compared with those of the controls. The large intestine microbiota in the yeast group had higher numbers of Prevotella, Mitsuokella and Selredient as an alternative to conventional protein ingredients in animal diets. The large intestine bacterial composition and their metabolites may be involved in an adaptive alteration of the colonic crypts without pathological consequences.
The replacement of the conventional proteins by proteins from Cyberlindnera jadinii in a weanling pig diet reshaped the large intestine microbiota structure. The novel yeast diet appeared to be selective for Lactobacillus spp., which may represent an added value resulting from using the sustainably produced yeast protein ingredient as an alternative to conventional protein ingredients in animal diets. The large intestine bacterial composition and their metabolites may be involved in an adaptive alteration of the colonic crypts without pathological consequences.
Ruminant gastrointestinal tract homeostasis deploys interactive microbiome-host metabolic communication and signaling axes to underpin the fitness of the host. After this stable niche is destroyed by environmental triggers, remodeling of homeostasis can occur as a spontaneous physiological compensatory actor.
In this study, 20 sheep were randomly divided into four groups a hay-fed control (CON) group and a high-grain (HG) diet group for 7, 14, or 28 days. Then, we examined 16S rRNA gene sequences and transcriptome sequences to outline the microbiome-host co-oscillation patterns in remodeling of colonic homeostasis in a sheep model during adaptation to a HG diet. Our data revealed that with durations of an HG diet, the higher starch levels directly affected the colonic lumen environment (lower pH and higher fermentation parameters), which in turn filtered lumen-specific functional taxonomic groups (HG-sensitive and HG-tolerant taxa). The colonic epithelium then gave rise to a new niche that triggered endoplasmic reticulum stress to activate unfolded protein response, if the duration of endoplasmic reticulum stress was overlong, this process would regulate cell apoptosis (Caspase-3, Caspase-8, and TNFRSF21) to achieve a functional transformation.