-
Wu McKenna posted an update 6 months ago
Serum lipids have been shown to regulate inflammatory and immune processes, but little is known about their association with thyroid autoimmunity. This study aimed to investigate the association of serum lipids with thyroid autoantibody positivity in the general population with normal thyroid-stimulating hormone (TSH) levels.
Data regarding the 7688 subjects’ baseline characteristics were retrospectively collected. All subjects were categorized into four groups according to thyroid autoantibodies against thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) positivity and serum lipid levels were compared. Binary logistic regression models were used to evaluate the risk of TgAb or TPOAb positivity with increasing serum lipid levels.
In 6456 included subjects, after adjusting for confounders, the risk of TgAb positivity was positively associated with increasing low-density lipoprotein cholesterol (LDL-C) levels (OR 1.14, 95% CI 1.03-1.27, P = 0.011) and negatively correlated with the increasing high-density lipoprotein cholesterol (HDL-C) levels (OR 0.77, 95% CI 0.61-0.98, P = 0.035). In female subjects, the association between increasing LDL-C (OR 1.16, 95% CI 1.04-1.28, P = 0.007) or HDL-C levels (OR 0.77, 95% CI 0.61-0.99, P = 0.037) and TgAb positivity become more pronounced.
We have shown the associations of HDL-C and LDL-C with TgAb positivity in the general population with normal TSH levels in a gender-dependent manner. This study highlights that serum lipids may be new predictors of thyroid autoimmunity even when TSH is within the reference range.
We have shown the associations of HDL-C and LDL-C with TgAb positivity in the general population with normal TSH levels in a gender-dependent manner. This study highlights that serum lipids may be new predictors of thyroid autoimmunity even when TSH is within the reference range.Climate change caused by carbon emissions has a strong influence on the economy and human society. Though numerous previous studies have emphasized the importance of low-carbon innovation on curbing or mitigating carbon emissions, not much attention has been given to the reverse effect. We used a panel of 285 Chinese prefecture-level cities from 2005 to 2016 and Cooperative Patent Classification (CPC)-Y02 patents as low-carbon innovation indicators. The results show that the increasing carbon emissions accelerate cities’ low-carbon innovation in China, and the predicted effect varies across low-carbon innovation types. As carbon emissions rise, more low-carbon innovation will occur in activities with higher carbon emissions. Besides, we explore environmental awareness as the mediation channel for carbon emissions to impact low-carbon innovation. With the help of media, government, and enterprises, the growing carbon emissions promote public environmental awareness and change consumers’ behaviors, motivating companies to speed up low-carbon innovation.The objective of the current study is groundwater vulnerability assessment using DRASTIC, modified DRASTIC, and three statistical bivariate models (frequency ratio (FR), evidential belief function (EBF), and weights-of-evidence (WOE)) for Sari-Behshahr plain, Iran. A total of 218 wells were sampled for nitrate concentration measurement in 2015. Datasets were generated using results from 109 wells having nitrate concentrations greater than 50 mg/L. The nitrate data were divided into two groups of 70% (76 locations as training dataset) for modeling and 30% (33 locations as a testing dataset) for model validation. Finally, five groundwater potential pollution (GPP) maps were produced by the training dataset and then evaluated using the testing dataset and receiver operating characteristic (ROC) method. Results of the ROC method showed that the WOE model had the highest predictive power, followed by EBF, FR, modified DRASTIC, and DRASTIC models. Results of the maps obtained revealed that high and very high pollution potential covered the southern part of the study areas, where big cities are located. Results of the present study can be replicated in other locations for identifying groundwater contaminant prone areas.Twelve seas with an integral coastline length of about 38,000 km wash upon the Russian coasts. They belong to the basins of the Atlantic, the Arctic, and the Pacific Oceans and stretch over temperate, subpolar, and polar climate zones. This review of 32 studies published between 2015 and August 2020 analyses the available peer-reviewed scientific publications related to the topic of plastic contamination. At present, plastic contamination of the marine environments is confirmed by field investigations in 7 out of 12 Russian seas. Pollution levels vary widely from 0.6 to 336,000 items/m3 for microplastics in water and from 1.3 to 10,179 items/kg (DW)-in sediments, while median macroplastics abundance is around 1.0 item/m2 at the coast. One monitoring survey of the Barents Sea reported mean macroplastics concentration in the upper 60 m as 0.011 mg/m3 and 2.9 kg/km2 at the sea floor. The identification of the polymer types with spectroscopy techniques is performed only in 9 studies (28%); most researchers use visual identification which makes the results difficult to compare. Most projects aimed at the plastic contamination research use their own collection and extraction methods that poorly agree with other studies. Since the pollution levels in most of the areas are relatively low, sampling is inhomogeneous in space and time. The most extensively studied areas are the beaches of the Baltic Sea, while the least examined is the Arctic region. Our study highlights the need for a discussion on harmonizing sampling methodology and identification techniques among different studies.In-situ catalytic pyrolysis has simple process configuration and low cost. Ex-situ catalytic pyrolysis can optimize the pyrolysis capacity and upgrade catalysis, and the catalytic can be reused. But there have been few studies researched on compare in-situ and ex-situ catalytic pyrolysis of the OS performed in similar reactor with two kinds of catalytic. This paper study the pyrolysis of oily sludge (OS) uses CaO and oily pyrolysis char as catalytic at 700 °C. Through analysis the pyrolysis oil (PO), pyrolysis solid (PS) and pyrolysis gas (PG) during pyrolysis procedure to research the difference between in-situ and ex-situ catalytic pyrolysis. The gas chromatography-mass spectrometry (GC-MS) results show that CaO was conducive to the synthesis of aromatics, which content more than aliphatics and heterocyclics in CaO-i (i in-situ) and CaO-e (e ex-situ) groups. However, char greatly inhibits the production of aromatic compounds and promotes the production of aliphatic compounds. L-685,458 cell line Gas chromatography (GC) results present that the char and CaO can greatly increase the content of combustible gas and the content reach to 85.