-
Thomassen Ebbesen posted an update 6 months ago
Motivated by recent nonlocal transport studies of quantum-Hall-magnet (QHM) states formed in monolayer graphene’s N=0 Landau level, we study the scattering of QHM magnons by gate-controlled junctions between states with different integer filling factors ν. For the ν=1|-1|1 geometry we find that magnons are weakly scattered by electric potential variation in the junction region, and that the scattering is chiral when the junction lacks a mirror symmetry. For the ν=1|0|1 geometry, we find that kinematic constraints completely block magnon transmission if the incident angle exceeds a critical value. Our results explain the suppressed nonlocal-voltage signals observed in the ν=1|0|1 case. We use our theory to propose that valley waves generated at ν=-1|1 junctions and magnons can be used in combination to probe the spin or valley flavor structure of QHM states at integer and fractional filling factors.Optical many-body systems naturally possess strong light-matter interactions and are thus of central importance for photonic applications. However, these applications are so far limited within the regime of intrinsic dynamically stable phases, and the possibility of unstable phases remains unidentified. Here we experimentally revealed a new dynamical phase of intrinsic optical instability by using a continuous-wave laser to drive an erbium-doped crystal. The transmission through the sample became unstable for intense laser inputs, and transient net gain was observed if the light passed the sample twice. The phase transition, between states in and out of a dynamical equilibrium, was induced by the dipole-dipole interactions between nearby erbium ions.Quasicrystals exhibit exotic properties inherited from the self-similarity of their long-range ordered, yet aperiodic, structure. The recent realization of optical quasicrystal lattices paves the way to the study of correlated Bose fluids in such structures, but the regime of strong interactions remains largely unexplored, both theoretically and experimentally. Here, we determine the quantum phase diagram of two-dimensional correlated bosons in an eightfold quasicrystal potential. Using large-scale quantum Monte Carlo calculations, we demonstrate a superfluid-to-Bose glass transition and determine the critical line. Moreover, we show that strong interactions stabilize Mott insulator phases, some of which have spontaneously broken eightfold symmetry. Our results are directly relevant to current generation experiments and, in particular, drive prospects to the observation of the still elusive Bose glass phase in two dimensions and exotic Mott phases.The diverse range of resources which underlie the utility of quantum states in practical tasks motivates the development of universally applicable methods to measure and compare resources of different types. However, many of such approaches were hitherto limited to the finite-dimensional setting or were not connected with operational tasks. We overcome this by introducing a general method of quantifying resources for continuous-variable quantum systems based on the robustness measure, applicable to a plethora of physically relevant resources such as optical nonclassicality, entanglement, genuine non-Gaussianity, and coherence. We demonstrate in particular that the measure has a direct operational interpretation as the advantage enabled by a given state in a class of channel discrimination tasks. We show that the robustness constitutes a well-behaved, bona fide resource quantifier in any convex resource theory, contrary to a related negativity-based measure known as the standard robustness. Furthermore, we show the robustness to be directly observable-it can be computed as the expectation value of a single witness operator-and establish general methods for evaluating the measure. Explicitly applying our results to the relevant resources, we demonstrate the exact computability of the robustness for several classes of states.Collimated sprays of hadrons, called jets, are an emergent phenomenon of quantum chromodynamics (QCD) at collider experiments, whose detailed internal structure encodes valuable information about the interactions of high energy quarks and gluons and their confinement into color-neutral hadrons. The flow of energy within jets is characterized by correlation functions of energy flow operators, with the three-point correlator being the first correlator with nontrivial shape dependence, playing a special role in unraveling the dynamics of QCD. In this Letter, we initiate a study of the three-point energy correlator to all orders in the strong coupling constant, in the limit where two of the detectors are squeezed together. We show that, by rotating the two squeezed detectors with respect to the third by an angle ϕ, a cos(2ϕ) dependence arising from the quantum interference between intermediate virtual gluons with +/- helicity is imprinted on the detector. This can be regarded as a double slit experiment performed with jet substructure, and it provides a direct probe of the ultimately quantum nature of the substructure of jets and of transverse spin physics in QCD. To facilitate our all-orders analysis, we adopt the operator product expansion (OPE) for light-ray operators in conformal field theory and develop it in QCD. Our application of the light-ray OPE in real world QCD establishes it as a powerful theoretical tool with broad applications for the study of jet substructure.We study a bulk fermionic dipolar molecular gas in the quantum degenerate regime confined in a two-dimensional geometry. Using two rotational states of the molecules, we encode a spin 1/2 degree of freedom. To describe the many-body spin dynamics of the molecules, we derive a long-range interacting XXZ model valid in the regime where motional degrees of freedom are frozen. Because of the spatially extended nature of the harmonic oscillator modes, the interactions in the spin model are very long ranged, and the system behaves close to the collective limit, resulting in robust dynamics and generation of entanglement in the form of spin squeezing even at finite temperature and in the presence of dephasing and chemical reactions. Pluripotin We discuss how the internal state structure can be exploited to realize time reversal and enhanced metrological sensing protocols.