• Termansen Ogle posted an update a month ago

    A recently developed thermodynamic theory for the determination of the driving force of crystallization and the crystal-melt surface tension is applied to the ice-water system employing the new Thermodynamic Equation of Seawater TEOS-10. The deviations of approximative formulations of the driving force and the surface tension from the exact reference properties are quantified, showing that the proposed simplifications are applicable for low to moderate undercooling and pressure differences to the respective equilibrium state of water. The TEOS-10-based predictions of the ice crystallization rate revealed pressure-induced deceleration of ice nucleation with an increasing pressure, and acceleration of ice nucleation by pressure decrease. This result is in, at least, qualitative agreement with laboratory experiments and computer simulations. Both the temperature and pressure dependencies of the ice-water surface tension were found to be in line with the le Chatelier-Braun principle, in that the surface tension decreases upon increasing degree of metastability of water (by decreasing temperature and pressure), which favors nucleation to move the system back to a stable state. The reason for this behavior is discussed. Finally, the Kauzmann temperature of the ice-water system was found to amount T K = 116 K , which is far below the temperature of homogeneous freezing. The Kauzmann pressure was found to amount to p K = – 212 MPa , suggesting favor of homogeneous freezing on exerting a negative pressure on the liquid. In terms of thermodynamic properties entering the theory, the reason for the negative Kauzmann pressure is the higher mass density of water in comparison to ice at the melting point.Biomedical signals constitute time-series that sustain machine learning techniques to achieve classification. These signals are complex with measurements of several features over, eventually, an extended period. Characterizing whether the data can anticipate prediction is an essential task in time-series mining. AC220 The ability to obtain information in advance by having early knowledge about a specific event may be of great utility in many areas. Early classification arises as an extension of the time-series classification problem, given the need to obtain a reliable prediction as soon as possible. In this work, we propose an information-theoretic method, named Multivariate Correlations for Early Classification (MCEC), to characterize the early classification opportunity of a time-series. Experimental validation is performed on synthetic and benchmark data, confirming the ability of the MCEC algorithm to perform a trade-off between accuracy and earliness in a wide-spectrum of time-series data, such as those collected from sensors, images, spectrographs, and electrocardiograms.We propose a quantitative approach for quantifying morphological complexity of a language based on text. Several corpus-based methods have focused on measuring the different word forms that a language can produce. We take into account not only the productivity of morphological processes but also the predictability of those morphological processes. We use a language model that predicts the probability of sub-word sequences within a word; we calculate the entropy rate of this model and use it as a measure of predictability of the internal structure of words. Our results show that it is important to integrate these two dimensions when measuring morphological complexity, since languages can be complex under one measure but simpler under another one. We calculated the complexity measures in two different parallel corpora for a typologically diverse set of languages. Our approach is corpus-based and it does not require the use of linguistic annotated data.In this study, we used a combined stochastic process and value-at-risk (VaR) method to examine an electronic commerce expansion decision. By modeling uncertain benefits as a stochastic process, maximum losses of alternative decisions were quantified and compared to help managers to make information system/information technology (IS/IT) project decisions. Our results, based on the maximum loss perspective, demonstrated that uncertainty plays a critical role in evaluating IS/IT projects. More importantly, the results illustrate that VaR serves as a useful tool in decision-making for managers to quantify the value of maximum possible loss and to help them reach decisions.We address the problem of two-variable causal inference without intervention. This task is to infer an existing causal relation between two random variables, i.e., X → Y or Y → X , from purely observational data. As the option to modify a potential cause is not given in many situations, only structural properties of the data can be used to solve this ill-posed problem. We briefly review a number of state-of-the-art methods for this, including very recent ones. A novel inference method is introduced, Bayesian Causal Inference (BCI) which assumes a generative Bayesian hierarchical model to pursue the strategy of Bayesian model selection. In the adopted model, the distribution of the cause variable is given by a Poisson lognormal distribution, which allows to explicitly regard the discrete nature of datasets, correlations in the parameter spaces, as well as the variance of probability densities on logarithmic scales. We assume Fourier diagonal Field covariance operators. The model itself is restricted to use cases where a direct causal relation X → Y has to be decided against a relation Y → X , therefore we compare it other methods for this exact problem setting. The generative model assumed provides synthetic causal data for benchmarking our model in comparison to existing state-of-the-art models, namely LiNGAM, ANM-HSIC, ANM-MML, IGCI, and CGNN. We explore how well the above methods perform in case of high noise settings, strongly discretized data, and very sparse data. BCI performs generally reliably with synthetic data as well as with the real world TCEP benchmark set, with an accuracy comparable to state-of-the-art algorithms. We discuss directions for the future development of BCI.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account