-
Burnham Lauritsen posted an update 6 months ago
Volatile compounds in Chinese medicinal liquor, Zhizhonghe Wujiapi (WJP liquor), were extracted by headspace-solid-phase microextraction (HS-SPME) and simultaneous distillation and extraction (SDE), respectively, and identified and quantified by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). Results showed that a total of 133 volatile compounds (i.e., 99 by HS-SPME, 67 by SDE, and 33 by both) including esters, alcohols, acids, aldehydes, ketones, furans, terpenes, and other miscellaneous compounds were identified by GC-MS. A total of 66 aroma active compounds were further recognized by GC-O, and 43 of them were confirmed as key aroma compounds owing to their high OAV values. After making a simulated reconstitute by mixing 31 characterized aroma compounds (OAVs ≥ 1) based on their measured concentrations, the aroma profile of the reconstitute showed a good similarity to the aroma of the original WJP liquor. Omission test further corroborated 25 key aroma-active compounds in the WJP liquor. The analysis of the volatile components of this special Chinese medicinal liquor is expected to provide some insights in terms of its quality improvement and aroma profile optimization.Phlorotannins are phenolic characteristic compounds of brown seaweeds that are only constituted by phloroglucinol (1,3,5-trihydroxybenzene). They are chain- and net-like structures of diverse molecular weights and have been widely identified in Ecklonia, Eisenia, and Ishige species. Since the time they were discovered in the ’70 s, phlorotannins have been suggested as a main factor responsible for the antimicrobial activities attributed to algae extracts. Currently, cumulative in vitro and in vivo research evidence the diverse bioactivities of phlorotannin extracts -such as antidiabetic, anticancer, and antibacterial- pointing out their potential pharmacological and food applications. However, metabolomic studies and clinical trials are scarce, and thus many phlorotannins health-beneficial effects in humans are not yet confirmed. This article reviews recent studies assessing the antidiabetic and anticancer activities of phlorotannins. compound library inhibitor Particularly, their potential to prevent and control the progression of these non-communicable diseases is discussed, considering in vitro and animal studies, as well as clinical interventions. In contrast to other approaches, we only included investigations with isolated phlorotannins or phlorotannin-rich extracts. Thus, phlorotannin extraction, purification and characterization procedures are briefly addressed. Overall, although considerable research showing the antidiabetic and anticancer potential of phlorotannins is now available, further clinical trials are still necessary to conclusively demonstrate the efficacy of these compounds as adjuvants for diabetes and cancer prevention or treatment.Residual microorganisms in dairy products are closely related to their quality deterioration and safety. Based on the minimum sterilization conditions required by Grade A Pasteurized Milk Ordinance, this study explored the microbiota present in milk products that were high temperature short time pasteurized at 72, 75, 80, 83, or 85 °C for 15 s, 20 s, and 30 s separately. Based on high-throughput sequencing results, 6 phyla and 18 genera were identified as dominant microbiota. Proteobacteria and Firmicutes were the maior bacteria in phyla, and each comprising more than 50%. Pseudomonas was account for more than 42% of all the genera detected in all samples. Moreover, the changes in flavor substances in pasteurized milk, including 16 free amino acids, 9 fatty acids, and 17 volatile compounds, were detected using principal component and multi factor analyses. The Pearson correlation coefficient analysis identified six bacteria genera as the core functional microbiota that significantly affected the flavor compounds and the safety and quality of pasteurized milk. Interestingly, Pseudomonas, Omithimimicrobium, Cyanobacteria and Corynebacterium had positive correlations with the flavor substances, whereas Streptococcus and Paeniclostridium had significant negative correlations with these substances. The results may help enhance the quality control of dairy products and can be used as indicators of microbial contamination of pasteurized dairy products.The flower of tea (Camellia sinensis L.) plant has been paid an increasing attention in the last twenty years, since it was found that tea flowers contained representative constituents similar to those of tea leaves, such as catechins, caffeine and amino acids. Tea flower is theoretically valuable although it has been considered as an industrial waste over a long period of time. This review summarizes the research findings conducted until now on physiological genetics, chemical composition, health benefits and toxicology of tea flowers, aiming to foresee their future applications. A lot of genes are involved in flower development and the synthesis and transmission of various chemicals in tea flowers. The chemical composition of tea flower consists mainly of catechins, polysaccharides, proteins, amino acids and saponins and thus tea flower possesses various health benefits such as antioxidant, anti-inflammatory, immunostimulating, antitumor, hypoglycemic, anti-obesity and anti-allergic activities. Moreover, tea flower contains a protease that can elevate the free amino acids content in the tea infusion by almost two folds. More importantly, the enzymatic activity of the protease is much higher than that of the commercially available proteases. Additionally, aqueous extracts of tea flower are demonstrated to safe to animals. Thus, the potential uses of tea flowers in food and medical fields are warranted.Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that have been identified as global pollutants. Their widespread occurrence, including in food, is a potential concern for consumers. This work focuses on the application of a simple and reliable analytical method for the simultaneous determination of ten perfluoroalkyl acids in highly complex fatty matrices (fats and oils). The perfluoroalkyl substances were extracted by the QuEChERS method, based on the dispersive-Solid Phase Extraction using styrene-divinylbenzene bulk sorbent, and quantitatively analysed by micro-high performance liquid chromatography tandem mass spectrometry. Recoveries ranged from 72 to 104% with an acceptable relative standard deviation below 10%. Limits of quantification were within the range 0.002-0.075 ng/g depending on the perfluoroalkyl compound. The most predominant compound in fat and oil food samples was perfluorooctanoic acid (PFOA) with a detection frequency of 100%, and the highest levels were found for perfluorobutanoic acid (PFBA).