• Linnet Hahn posted an update 6 months ago

    001) in both strains. In jejunum digesta, the MI concentration did not differ between strains, but InsP6 concentration was higher in LB than in LSL hens (P = 0.002) and the highest in week 30 and 60. Total phosphatase and phytase activities were higher in LB than in LSL hens (P ≤ 0.009). CPI-203 manufacturer Period effects were also significant for these enzymes. Concentrations of some constituents of the cecal content were different between the strains. The MI concentration in the egg albumen and yolk was higher in LB than in LSL hens. Differences in InsP6- and MI-related metabolism of the 2 hen strains existed. These differences were partly dependent of the period. Especially, week 24 was a period of remarkable change of metabolism. Great differences also existed among individuals, making it worth to have a closer look at the metabolism of individuals in addition to evaluating treatment means. Further studies on metabolic, genetic, and microbiome level may help explain these differences.This study investigated that circadian zinc (Zn) feeding regime affected laying performance, Zn and calcium (Ca) status, antioxidant capacity and gene expression of circadian clock, and Ca and Zn transporter in laying hens. In total, 162 of 21-wk Hyline Sophie laying hens were assigned randomly into 3 groups including CON group (Control Zn, basal diets supplemented 60 mg/kg Zn), HL group (high-low Zn, basal diets supplemented 120 mg/kg Zn-basal diets), and LH group (low-high Zn, basal diets-basal diets supplemented 120 mg/kg Zn), which were fed at 0,530 h and 1,530 h, respectively. Blood, tibia, duodenum, and eggshell gland samples were collected at 8 h intervals with starting at 0,000 h in 1 d after 10 wk of experiment. Compared with CON group 1) Feed conversion ratio (FCR) of LH and HL group decreased significantly (P less then 0.05); 2) in serum, total antioxidant capacity and CuZn-superoxide dismutase (SOD) at 0,000 h increased significantly, as well as Ca and Zn concentration of tibia at 0,800 h in LH group (P less then 0.05); 3) in duodenum, mRNA expression of calbindin-d28k (CaBP) and NCX1 at 1,600 h in HL group upregulated significantly, as well as Per2 and Per3 at 0,000 h, CLOCK, Cry2, Per2, and Per3 at 1,600 h (P less then 0.05). But, Zn5 at 0,800 h in HL group downregulated significantly (P less then 0.05). 4) In eggshell gland, the mRNA expression of CaBP at 0,000 h and Zn5 at 1,600 h in HL group downregulated significantly (P less then 0.05). However, SOD at 1,600 h in HL group upregulated significantly, as well as Cry1 and Per3 at 0,800 h in HL group upregulated significantly (P less then 0.05). In conclusion, circadian Zn feeding diet regime was beneficial to improvement of FCR. The regulation of laying hens’ circadian rhythms affected Zn and Ca transporter and interrelationship between Ca and Zn metabolism, also altered antioxidant capacity in present study. Therefore, circadian Zn feeding regime can be considered as a new method to improve laying performance in laying hens.Broiler embryonic development depends on the nutrients that are available in the egg, which includes mostly water, lipids, and proteins. Carbohydrates represent less than 1%, and free glucose only 0.3%, of the total nutrients. Considering that energy requirements increase during incubation and metabolism is shifted toward the use of glycogen stores and gluconeogenesis from amino acids, extensive muscle protein degradation in the end of incubation can compromise chick development in the initial days after hatch. Significant prehatch changes occur in embryonic metabolism to parallel the rapid embryonic development. Oral consumption of the amniotic fluid begins around 17 d of incubation and promotes rapid development of the intestinal mucosa, which is characterized by morphological changes and increased expression and activity of enzymes and transporters. Furthermore, ingested substrates are stored as nutritional reserves to be used during hatching and in the first week after hatch. At hatch, this limited-nutrient store is directed to the functional development of the gastrointestinal tract to enable assimilation of exogenous nutrients. In ovo feeding is an alternative to deliver essential nutrients to chick embryos at this critical and challenging phase. The improved nutritional status and physiological changes triggered by in ovo feeding can resonate throughout the entire rearing period with significant health and economic gains. The present review addresses the main changes in metabolism and intestinal development throughout incubation, and also addresses scientific advances, limitations and future perspectives associated with the use of in ovo feeding that has been regarded as an important technology by the poultry industry.Mineral nutrition plays a critical role in growth and bone mineralization in meat ducks as well as reproductive performance in duck layers and duck breeders. In addition to improving production performance parameters, minerals are also essential to support several enzymatic systems to enhancing antioxidant ability and immune function. This review explores the biological function and metabolism of minerals in the body, as well as mineral feeding strategy of various species of ducks. Topics range from mineral requirement to the physiological role of macroelements such as calcium and phosphorus and microelements such as zinc and selenium, etc. As with the improvement of genetic evolution and upgrade of rearing system in duck production, mineral requirements and electrolyte balance are urgent to be re-evaluated using sensitive biomarkers for the modern duck breed characterized by the rapid growth rate and inadequate bone development and mineralization. For duck breeders, mineral nutrition is not only required forses and diets supplemented with organic sources, phytase and VD3.Transportation of poultry is stressful, especially for end-of-cycle hens (EOCH) experiencing metabolic stress. The aim of this study was to evaluate the effects of simulated transport on well- and poor-feathered brown-strain EOCH. The study (5 × 3 × 2 factorial arrangement) consisted of 5 temperature and relative humidity (RH) combinations applied directly at crate level (-10°C uncontrolled RH , +21°C 30%RH , +21°C 80%RH , +30°C 30%RH , or +30°C 80%RH ), 3 durations (4, 8, or 12 h), and 2 feather covers (well or poor ). Hens (n = 540) from 3 commercial farms were housed for a 3- to 5-d adaptation period, then feed was withdrawn before treatment exposure (crate density 54.5 kg/m2). Data collected included chamber conditions, feather condition score, behavior, blood physiology, core body temperature, mortality, and meat quality. Data were analyzed (randomized complete block design) using ANOVA; significance declared at P ≤ 0.05. Time spent performing thermoregulatory behaviors increased for hot (30/30 and 30/80) and cold (-10) treatments.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account