-
Leach Sparks posted an update 6 months ago
CZE was then successfully applied for antigen quantification of commercial O monovalent and A/O bivalent FMDV vaccines. Compared with HPSEC, CZE was not only able to quantify each serotype of FMDV, but also free from interference of nucleic acids impurities. In summary, the CZE can be a simple, rapid, and reliable tool for quality control of monovalent and bivalent FMDV vaccines. The CZE method can also be further extended to the quality control of other multivalent virus and virus like particle vaccines.High-performance affinity chromatography is limited by its high cost and high pressure. Paper is made up of porous fiber networks and has the properties of low cost, ease of fabrication, and biodegradable. Due to these advantages, herein, we immobilized beta2-adrenoceptor (β2-AR) onto the surface of the polytetrafluoroethylene membrane, a paper-based material, and constructed a G protein-coupled receptor (GPCR)-in-paper chromatographic platform. This platform was characterized by Fourier transform infrared spectroscopy, fluorescence analysis, X-ray photoelectron spectroscopy, and chromatographic studies. These morphological and elemental analysis showed that β2-AR was successfully immobilized on the paper surface. The specific drugs have good retentions on the GPCR-in-paper chromatographic platform. G150 The association constants of salbutamol, terbutaline and bambuterol to β2-AR were calculated to be 2.02 × 104 M-1, 1.15 × 104 M-1, 1.75 × 104 M-1 by adsorption energy distribution, which were in good line with the values from frontal analysis, zonal elution and previous literatures. We demonstrated that the GPCR-in-paper platform was cost-effective, easy to be modified for protein immobilization, and applicable in the receptor-drug interaction analysis. We believe such a platform sheds new light on paper chromatography for receptor-drug interaction analysis and other applications.A fully automated online emulsification-enhanced disposable pipette extraction-gas chromatography-mass spectrometry (EE-DPX-GC-MS) method has been developed for the extraction of six polychlorinated biphenyls (PCBs) from environmental waters. An in-house prepared material, graphitic carbon nitride (g-C3N4), was used as sorbent in a home-packed DPX device. The six PCBs studied include PCB 10, 28, 52, 153, 138 and 180. g-C3N4 was characterized successfully by X-ray diffraction, elemental analysis, scanning electron microscopy, Fourier-transform infrared and Raman spectroscopy. As a C-N analogue of graphite, the two-dimensional structure of g-C3N4 allows rapid analyte adsorption and desorption to take place. With a significant number of nitrogen functionalities in g-C3N4, the material dispersed well in aqueous sample, increasing the active surface area of contact between the sorbent and the sample. When coupled with a pre-emulsification step, PCBs in each portion of sample could be efficiently extracted by g-C3N4 within 20 s of gentle turbulence. Under the most favorable conditions, the automated online EE-DPX-GC-MS method achieved wide dynamic working ranges with good linearity (r2 ≥ 0.998) for all analytes. Limits of detection ranging between 4.35 and 7.82 ng L-1 were attained, with enrichment factors of between 34 and 57 and relative standard deviations (RSDs) for intra- and inter-day precision of ≤ 8.95% and ≤ 12.6%, respectively. Absolute recoveries were between 69.3% and 109%. The fully automated online EE-DPX-GC-MS approach was applied to industrial wastewaters and reservoir waters where good relative recoveries of PCBs of between 89.3% and 105% were obtained, with RSDs ≤ 11.6%.A methodology based on off-line multidimensional thin-layer chromatography was developed for isolation of several secondary metabolites from bark of Japanese knotweed (Fallopia japonica Houtt.) rhizomes. Successive fractionation steps using PLC silica gel and HPTLC silica gel or HPTLC cellulose plates in combination with various developing solvents enabled isolation of (+)-catechin, (-)-epicatechin, (-)-epicatechin gallate, procyanidin B1, procyanidin B2, procyanidin B3, proanthocyanidin B dimer gallate, emodin, emodin-8-O-glucoside and emodin-8-O-malonyl-glucoside. Their identity was confirmed by HPTLC, HPTLC-MSn and for most of them also by 1H NMR and 2D NMR analyses. To the best of our knowledge emodin-8-O-malonyl-glucoside, procyanidins B1 and B2 were for the first time isolated from this plant material. HPTLC and HPTLC-MSn analyses were also performed as support of fractionation/isolation process, leading to first detection of some compounds in bark of Japanese knotweed rhizomes and Japanese knotweed rhizomes in general procyanidins B1 and B2, methyl derivatives of emodin bianthrone and emodin bianthrone-hexose, resveratrol-malonyl-hexoside and taxifolin derivatives. Characterization of flavan-3-ols and proanthocyanidins was facilitated by post-chromatographic derivatization of the corresponding chromatographic zones with 4-dimethylaminocinnamaldehyde (DMACA) detection reagent.Capillary electrochromatography (CEC) represents a technique with less than 30 years of intense development and in this period this technique has seen huge promise, fast development, stagnation, and significant decline of innovative activity. The major goal of the present overview is not to present an extensive review of the literature on chiral CEC but to analyze the reasons for this dramatic development and attempting to answer questions such as 1) Was the potential of CEC reasonably evaluated in 1990s before starting the explosive development in this field? 2) Did the development of this technique take the right track? 3) What other developments and competitive trends led to stagnation in the advancement of CEC? 4) Why is the activity in this field currently decreasing? 5) What are the current challenges and promises and what is the future of chiral CEC?The conversion of waste streams into a useable material through a recycling process is a hot topic. Waste streams can originate from domestic and industrial sources and range from plastic waste to medical waste to various industrial waste streams, both solid and liquid. In addition to waste circularity, circularity for bio-based waste streams and renewable sources are also being investigated. To simplify this complexity, this article presents a case study evaluating the output from the feedstock recycling of plastic waste originating from municipal solid waste. Plastic waste entering the environment is undesired, and many initiatives are working towards a plastics circular economy. Once disposed of, ideally, plastic waste should be either re-used or recycled in order to avoid incineration or disposal in landfills. Recycling waste plastic can occur either via mechanical recycling or feedstock (chemical) recycling, where feedstock recycling can occur for example, through gasification or pyrolysis technologies. This article will focus only on the oils obtained from the pyrolysis of mixed waste plastic.