-
Foldager Terkildsen posted an update 6 months, 3 weeks ago
Thiol-containing natural products possess a wide range of bioactivities. The burst of synthetic biology technology facilitates the discovery of new thiol-containing active ingredients. Herein, we report a sensitive, quick, and robust surface-enhanced Raman scattering technology for specific and multiplex detection of thiol-containing compounds without purification requirements and also indicating the thiols with different chemical environments. Using this platform, we successfully demonstrated the simultaneous detection of thiol-containing compounds from as low as 1 μM of analytes spiked in complex culture matrices.Salt is a common cause of damage to building materials used in cultural and historical buildings. selleck chemical The damage to aged wood in historical wooden buildings has not been extensively studied, resulting in the need for a more detailed analysis. In this work, Yingxian Wooden Pagoda, a typical historical wooden structure, was taken as the research object. Multichemical analyses were conducted to evaluate and understand the salt-induced damage to the aged wood using a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer, sulphur K-edge X-ray absorption near-edge structure spectroscopy, X-ray fluorescence spectroscopy, X-ray powder diffraction, and attenuated total reflectance fourier transformed infrared spectroscopy. The results showed the presence of invasive salt crystallisations and ions in the aged samples. The source of these invasive elements was deduced by identifying the type, amount, and valency of the elements; they were found to be derived from environmental factors such as acid rain and atmospheric pollutant. The unique damage mechanism and route induced by salt in historical buildings made of wood were summarised; the damage was attributed to the accumulation of sulphate salt causing hydrolysis of the carbohydrates and salt crystallisation resulting in mechanical damage. This interdisciplinary study is significant for decision making in studies related to the preservation and evaluation of historical wooden buildings.Herein, a rapid and highly sensitive amperometric biosensor for the detection of α-ketoglutarate (α-KG) was constructed via an electrochemical approach, in which the glutamate dehydrogenase (GLUD) was modified on the surface of reduced graphene oxide-gold nanoparticle composite (rGO-Aunano composite). The rGO-Aunano composite was one-step electrodeposited onto glassy carbon electrode (GCE) surface and was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical techniques. In addition, the rGO-Aunano/GCE was also found to electrocatalyze the oxidation of β-nicotinamide adenine dinucleotide (NADH) at the peak potential of 0.3 V, which was negatively shifted compared with that at bare GCE or Aunano/GCE, illustrating better catalytic performance of rGO-Aunano. After the modification of GLUD, the GLUD/rGO-Aunano/GCE led to effective amperometric detection of α-KG through monitoring the NADH consumption and displayed a linear response in the range of 66.7 and 494.5 μM, with the detection limit of 9.2 μM. Moreover, the prepared GLUD/rGO-Aunano/GCE was further evaluated to be highly selective and used to test α-KG in human serum samples. The recovery and the RSD values were calculated in the range of 97.9-102.4% and 3.8-4.5%, respectively, showing a great prospect for its real application.Mume Fructus (MF) contains a variety of organic acids, free amino acids, and nucleoside components, and studies have not yet analyzed the relationship between the components of free amino acids and nucleosides with the varieties of MF. A rapid and sensitive method was established for simultaneous determination of 21 free amino acids and 9 nucleosides in MF by ultrafast liquid chromatography-mass spectrometry. The analysis was carried out on a Waters XBridge Amide column (100 mm × 2.1 mm, 3.5 μm) with elution by the mobile phase of 0.2% aqueous formic acid (A) and 0.2% formic acid acetonitrile (B) at a flow rate of 0.2 mL/min with 1 μL per injection. The column temperature was maintained at 30°C. The target compounds were analyzed by the positive ion multiple reaction monitoring (MRM) mode. The comprehensive evaluation of the samples was carried out by principal component analysis (PCA) and technique for order preference by similarity to an ideal solution (TOPSIS) analysis. Results showed the method could simultaneously determine 30 components in MF. The content of total analytes in six mainstream varieties was different, exhibited the order Nangao > Daqingmei > Zhaoshuimei > Yanmei > Shishengme > Baimei, and aspartic acid and adenosine were the most abundant amino acid and nucleoside. PCA and OPLS-DA could easily distinguish the samples, and 11 components could be chemical markers of sample classification. TOPSIS implied that the quality of Nangao and Daqingmei was superior to the other varieties. The results could provide a reliable basis for quality evaluation and utilisation of medicinal and edible MF.
A dental loupe is a tool used by many dentists and dental students to improve visual field and performance. This study aims to assess the practices and attitudes about dental magnification loupes and their relationship to musculoskeletal disorders.
A cross-sectional study was conducted involving 400 dental students and dentists in four dental colleges in Jeddah, Saudi Arabia. The mean age was 28.35 years (SD = 8.50), and 56% of the participants were male. Also, 70.75% were students or interns, while 29.25% were dentists. Data gathering was conducted using a questionnaire that was composed of four sections demographic, magnification devices usage, attitude toward dental loupes, and the Nordic questionnaire to assess musculoskeletal disorders.
A total of 66% of participants had used dental magnification tools before, but only 12.25% were using dental loupes at the time of the study. The main reported advantages of dental loupes were comfort in vision (59.25%) and improved work accuracy (53%), while the main disadvantage was difficulty in visual measurement (28.