-
Bach Thorpe posted an update 6 months, 1 week ago
Two studies conducted during the 2016 presidential campaign examined the dynamics of the objectivity illusion, the belief that the views of “my side” are objective while the views of the opposing side are the product of bias. In the first, a three-stage longitudinal study spanning the presidential debates, supporters of the two candidates exhibited a large and generally symmetrical tendency to rate supporters of the candidate they personally favored as more influenced by appropriate (i.e., “normative”) considerations, and less influenced by various sources of bias than supporters of the opposing candidate. This study broke new ground by demonstrating that the degree to which partisans displayed the objectivity illusion predicted subsequent bias in their perception of debate performance and polarization in their political attitudes over time, as well as closed-mindedness and antipathy toward political adversaries. These associations, furthermore, remained significant even after controlling for baseline levels of partisanship. A second study conducted 2 d before the election showed similar perceptions of objectivity versus bias in ratings of blog authors favoring the candidate participants personally supported or opposed. These ratings were again associated with polarization and, additionally, with the willingness to characterize supporters of the opposing candidate as evil and likely to commit acts of terrorism. At a time of particular political division and distrust in America, these findings point to the exacerbating role played by the illusion of objectivity.The new radiocarbon calibration curve (IntCal20) allows us to calculate the gradient of the relationship between 14C age and calendar age over the past 55 millennia before the present (55 ka BP). The new gradient curve exhibits a prolonged and prominent maximum between 48 and 40 ka BP during which the radiocarbon clock runs almost twice as fast as it should. This radiocarbon time dilation is due to the increase in the atmospheric 14C/12C ratio caused by the 14C production rise linked to the transition into the Laschamp geomagnetic excursion centered around 41 ka BP. The major maximum in the gradient from 48 to 40 ka BP is a new feature of the IntCal20 calibration curve, with far-reaching impacts for scientific communities, such as prehistory and paleoclimatology, relying on accurate ages in this time range. To illustrate, we consider the duration of the overlap between Neanderthals and Homo sapiens in Eurasia.Penguins are the only extant family of flightless diving birds. They currently comprise at least 18 species, distributed from polar to tropical environments in the Southern Hemisphere. The history of their diversification and adaptation to these diverse environments remains controversial. We used 22 new genomes from 18 penguin species to reconstruct the order, timing, and location of their diversification, to track changes in their thermal niches through time, and to test for associated adaptation across the genome. Our results indicate that the penguin crown-group originated during the Miocene in New Zealand and Australia, not in Antarctica as previously thought, and that Aptenodytes is the sister group to all other extant penguin species. We show that lineage diversification in penguins was largely driven by changing climatic conditions and by the opening of the Drake Passage and associated intensification of the Antarctic Circumpolar Current (ACC). Penguin species have introgressed throughout much of their evolutionary history, following the direction of the ACC, which might have promoted dispersal and admixture. Changes in thermal niches were accompanied by adaptations in genes that govern thermoregulation and oxygen metabolism. Estimates of ancestral effective population sizes (N e ) confirm that penguins are sensitive to climate shifts, as represented by three different demographic trajectories in deeper time, the most common (in 11 of 18 penguin species) being an increased N e between 40 and 70 kya, followed by a precipitous decline during the Last Glacial Maximum. The latter effect is most likely a consequence of the overall decline in marine productivity following the last glaciation.Extensive pharmacologic, genetic, and epigenetic research has linked the glucocorticoid receptor (GR) to memory processes, and to risk and symptoms of posttraumatic stress disorder (PTSD). In the present study we investigated the epigenetic pattern of 12 genes involved in the regulation of GR signaling in two African populations of heavily traumatized individuals Survivors of the rebel war in northern Uganda (n = 463) and survivors of the Rwandan genocide (n = 350). The strongest link between regional methylation and PTSD risk and symptoms was observed for NTRK2, which encodes the transmembrane receptor tropomyosin-related kinase B, binds the brain-derived neurotrophic factor, and has been shown to play an important role in memory formation. NTRK2 methylation was not related to trauma load, suggesting that methylation differences preexisted the trauma. Because NTRK2 methylation differences were predominantly associated with memory-related PTSD symptoms, and because they seem to precede traumatic events, we next investigated the relationship between NTRK2 methylation and memory in a sample of nontraumatized individuals (n = 568). We found that NTRK2 methylation was negatively associated with recognition memory performance. DNA Damage chemical Furthermore, fMRI analyses revealed NTRK2 methylation-dependent differences in brain network activity related to recognition memory. The present study demonstrates that NTRK2 is epigenetically linked to memory functions in nontraumatized subjects and to PTSD risk and symptoms in traumatized populations.The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel is essential for epithelial salt-water balance. CFTR mutations cause cystic fibrosis, a lethal incurable disease. In cells CFTR is activated through the cAMP signaling pathway, overstimulation of which during cholera leads to CFTR-mediated intestinal salt-water loss. Channel activation is achieved by phosphorylation of its regulatory (R) domain by cAMP-dependent protein kinase catalytic subunit (PKA). Here we show using two independent approaches–an ATP analog that can drive CFTR channel gating but is unsuitable for phosphotransfer by PKA, and CFTR mutants lacking phosphorylatable serines–that PKA efficiently opens CFTR channels through simple binding, under conditions that preclude phosphorylation. Unlike when phosphorylation happens, CFTR activation by PKA binding is completely reversible. Thus, PKA binding promotes release of the unphosphorylated R domain from its inhibitory position, causing full channel activation, whereas phosphorylation serves only to maintain channel activity beyond termination of the PKA signal.