-
Bonner Hinson posted an update 6 months, 2 weeks ago
The diagnosis of combined hepatocellular-cholangiocarcinoma (cHCC-CCA) requires histomorphological detection of both hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). However, these primary liver cancers (PLCs) have a wide variety of microscopic appearances resulting in difficulties and uncertainties in cHCC-CCA’s diagnosis. This study aims to perform a clinicopathologic analysis on the diagnosis of PLCs at a tertiary referral hospital in Thailand using traditional morphologic studies.
A 5-year retrospective analysis of pathologically diagnosed PLCs was conducted. Pathological features and clinical characteristics of cHCC-CCA and other PLCs with the histopathologic resemblance to cHCC-CCA were studied. The pathological diagnosis was rendered based on histomorphological context rather than immunoreactivity. A literature review containing diagnostic pitfalls of cHCC-CCA was carried out.
PLCs from a total of 295 patients were retrieved, and cHCC-CCA accounted for 1.4% (n=4) of the should never be diagnosed as cHCC-CCA.
Cellular growth arrest, associated with ‘senescence’, helps to safeguard against the accumulation of DNA damage which is often recognized as the underlying mechanism of a wide variety of age-related pathologies including cancer. Cellular senescence has also been described as a ‘double-edged sword’. In cancer, for example, the creation of an immune-suppressive milieu by senescent tumor cells through the senescence-associated secretory phenotype contributes toward carcinogenesis and cancer progression.
The potential for cellular senescence to confer multi-faceted effects on tissue fate has led to a rejuvenated interest in its landscape and targeting. Interestingly, redox pathways have been described as both triggers and propagators of cellular senescence, leading to intricate cross-links between both pathways.
In this review, we describe the mechanisms driving cellular senescence, the interface with cellular redox metabolism as well as the role that chemotherapy-induced senescence plays in secondary carcinogenesis. Notably, the role that anti-apoptotic proteins of the Bcl-2 family play in inducing drug resistance via mechanisms that involve senescence induction.
Though the therapeutic targeting of senescent cells as cancer therapy remains in its infancy, we summarize the current development of senotherapeutics, including recognized senotherapies, as well as the repurposing of drugs as senomorphic/senolytic candidates.
Though the therapeutic targeting of senescent cells as cancer therapy remains in its infancy, we summarize the current development of senotherapeutics, including recognized senotherapies, as well as the repurposing of drugs as senomorphic/senolytic candidates.Parkinson’s Disease (PD) is a neurodegenerative disorder affecting more than 10 million people worldwide. Currently, PD has no cure and no early diagnostics methods exist. Mitochondrial dysfunction is presented in the early stages of PD, and it is considered an important pathophysiology component. We have previously developed mitochondria-targeted hydroxycinnamic acid derivatives, presenting antioxidant and iron-chelating properties, and preventing oxidative stress in several biological models of disease. We have also demonstrated that skin fibroblasts from male sporadic PD patients (sPD) presented cellular and mitochondrial alterations, including increased oxidative stress, hyperpolarized and elongated mitochondria and decreased respiration and ATP levels. We also showed that forcing mitochondrial oxidative phosphorylation (OXPHOS) in sPD fibroblasts uncovers metabolic defects that were otherwise hidden. In this work, we tested the hypothesis that a lead mitochondria-targeted hydroxycinnamic acid derivative ts based on a polyphenol scaffold can be used as potential drug candidates for delaying PD progression, validating the use of fibroblasts from sPD patients with more active OXPHOS as platforms for mitochondria-based drug development.Potassium channels are important regulators of cellular homeostasis and targeting these proteins pharmacologically is unveiling important mechanisms in cancer cell biology. Here we demonstrate that pharmacological stimulation of the Kv11.1 potassium channel activity results in mitochondrial reactive oxygen species (ROS) production and fragmentation in breast cancer cell lines and patient-derived organoids independent of breast cancer subtype. mRNA expression profiling revealed that Kv11.1 activity significantly altered expression of genes controlling the production of ROS and endoplasmic-reticulum (ER) stress. Characterization of the transcriptional signature of breast cancer cells treated with Kv11.1 potassium channel activators strikingly revealed an adaptive response to the potentially lethal augmentation of ROS by increasing Nrf2-dependent transcription of antioxidant genes. Nrf2 in this context was shown to promote survival in breast cancer, whereas knockdown of Nrf2 lead to Kv11.1-induced cell death. In conclusion, we found that the Kv11.1 channel activity promotes oxidative stress in breast cancer cells and that suppression of the Nrf2-mediated anti-oxidant survival mechanism strongly sensitized breast cancer cells to a lethal effect of pharmacological activation of Kv11.1.Sirtuin 1 (SIRT1) has been described to modify immune responses by modulation of gene transcription. As transcriptional reprogramming is the molecular substrate of trained immunity, a de facto innate immune memory, we investigated the role of SIRT1 in the induction of trained immunity. We identified various SIRT1 genetic single nucleotide polymorphisms affecting innate and adaptive cytokine production of human peripheral blood mononuclear cells (PBMCs) in response to various stimuli on the one hand, and in vitro induction of trained immunity on the other hand. Furthermore, inhibition of SIRT1 upregulated pro-inflammatory innate cytokine production upon stimulation of PBMCs. However, inhibition of SIRT1 in vitro had no effect on cytokine responses upon induction of trained immunity, while activation of SIRT1 mildly modified trained immunity responses. find more In conclusion, SIRT1 modifies innate cytokine production by PBMCs in response to various microbes, but has only a secondary role for BCG and β-glucan-induced trained immunity responses.