-
Hedrick Foley posted an update 6 months ago
Multicomponent reactions (MCRs) undoubtedly correspond to one of the synthetic strategies that best fit the new demands of chemistry for presenting high atom economy and enabling molecular diversity. However, many challenges still exist when products possessing stereogenic centres are formed. The field of asymmetric catalytic reactions has achieved significant progress in recent decades; new applications for chiral ligands and catalysts have been demonstrated and new catalysts have been specifically designed for challenging chemical conversions. In this sense, highly efficient approaches for classic multicomponent reactions such as the Ugi reaction and a number of new asymmetric MCRs have been described. In this review we discuss the recent developments that enable catalytic enantioselective MCRs including the proposed mechanistic pathways.Room-temperature ferromagnetic behaviour has been reported in nanoscale materials expected to be diamagnetic, including gold. However, it is yet unclear which factors (size, shape, surface coating) predominantly influence the magnitude of the magnetic response. In this work, we study the magnetic and electronic properties of similarly-sized gold nanoparticles (Au NPs) coated with four different n-alkanethiols, as well as hydroxyl- and carboxyl-functionalized alkanethiols using superconducting quantum interference device (SQUID) magnetometry and ultraviolet photoelectron spectroscopy (UPS). We find room-temperature behaviour (hysteresis in magnetization vs. field strength loops) in all samples, as well as large effective magnetic anisotropy. Importantly, we find the nanoparticles coated with polar chain end-groups (-OH and -COOH) show markedly higher magnetization; this increased magnetization correlates with a higher work function. This work establishes chemical handles to enhance magnetism in nanoscale gold particles.Fluorescent probes are increasingly used as reporter molecules in a wide variety of biophysical experiments, but when designing new compounds it can often be difficult to anticipate the effect that changing chemical structure can have on cellular localisation and fluorescence behaviour. To provide further chemical rationale for probe design, a series of donor-acceptor diphenylacetylene fluorophores with varying lipophilicities and structures were synthesised and analysed in human epidermal cells using a range of cellular imaging techniques. These experiments showed that, within this family, the greatest determinants of cellular localisation were overall lipophilicity and the presence of ionisable groups. Indeed, compounds with high log D values (>5) were found to localise in lipid droplets, but conversion of their ester acceptor groups to the corresponding carboxylic acids caused a pronounced shift to localisation in the endoplasmic reticulum. Mildly lipophilic compounds (log D = 2-3) with strongly basic amine groups were shown to be confined to lysosomes i.e. an acidic cellular compartment, but sequestering this positively charged motif as an amide resulted in a significant change to cytoplasmic and membrane localisation. Finally, specific organelles including the mitochondria could be targeted by incorporating groups such as a triphenylphosphonium moiety. Taken together, this account illustrates a range of guiding principles that can inform the design of other fluorescent molecules but, moreover, has demonstrated that many of these diphenylacetylenes have significant utility as probes in a range of cellular imaging studies.A new approach to access 1-benzylisoindoline and 1-benzyl-tetrahydroisoquinoline has been developed through nucleophilic addition of organozinc reagents to N,O-acetals. A number of substituted organozinc reagents were amenable for this transformation, and the desired products were obtained with excellent yields. Moreover, Sc(OTf)3 proved to be an effective catalyst for the formation of 1-benzylisoindoline and 1-benzyl-tetrahydroisoquinoline using such nucleophilic addition.A facile and practical method for the synthesis of 2,3,4-trisubstituted 2-aminothiophenes by the cyclization of gem-dibromoalkenes or gem-dichloroalkenes with β-keto tertiary thioamides has been developed. The cyclization reaction proceeded chemoselectively and regioselectively under metal-catalyst-free conditions, providing various structurally diverse 2,3,4-trisubstituted N,N’-dialkyl 2-aminothiophenes in good to excellent yields.A copper(i)-catalyzed three-component addition-cycloisomerization difunctionalization reaction of 1,3-enyne-ACPs with Togni I reagent and TMSCN under mild reaction conditions has been developed, affording 3-trifluoroethylcyclopentanaphthalene-4-carbonitrile derivatives. The reaction proceeded through a copper(i)-catalyzed 1,4-addition of conjugated 1,3-enynes via a radical relay process and aromatic cycloisomerization of allene-ACP intermediates.Convergent strategies for the first total synthesis of biselyngbyolide C and an alternative route for the total synthesis of biselyngbyolide A have been developed. The key strategic feature in this study is Heck macrocyclization. selleckchem The use of intramolecular Heck coupling for biselyngbyolide B was demonstrated by us earlier; however such a strategy has not been explored further for the other members of this family of natural products, in particular, where sensitive skipped olefins are involved. The other highlights of this synthetic study include iterative Crimmins acetate aldol and Wittig olefination processes, followed by the less explored cobalt-hydride-based reduction of an activated olefin and Shiina esterification. Our synthetic study enabled us to amend the reported NMR data of biselyngbyolides A and C. An evaluation of the anticancer activities of both biselyngbyolides A and C revealed that the apoptosis generated in cancer cells followed an intrinsic pathway.A highly efficient BF3·OEt2-mediated cyclization of β,γ-unsaturated oximes and tosylhydrazones with N-(arylthio/arylseleno)succinimides has been established for the construction of N-heterocycles in a one-step manner. This metal-free cyclization provides direct access to isoxazoles and dihydropyrazoles in good to excellent yields at room temperature. The mechanistic experiments support the formation of a cationic species PhS+ which plays a critical role in this cyclization process.