• Lundberg Wood posted an update 6 months, 1 week ago

    Following treatment with 1400W or GB, surgery‑induced cognitive dysfunction was improved. Compared with the control group, the surgery group exhibited significant overproduction of iNOS and MDA in the hippocampus on postoperative day 1. Higher levels of NO were also detected in the hippocampus and prefrontal cortex of the surgery group on postoperative day 1. Furthermore, pretreatment with 1400W or GB significantly inhibited the surgery‑induced elevation of NO and MDA in brain tissues. Moreover, GB pretreatment significantly inhibited surgery‑induced downregulation of SOD and upregulation of iNOS. Surgery‑induced increases in neuronal loss and the Bax/Bcl‑2 ratio in the hippocampus were significantly inhibited by pretreatment with GB. Collectively, the results of the present study demonstrated that the therapeutic effects of GB on PND were associated with inhibition of iNOS‑induced NO production, increased SOD, and the alleviation of neuronal loss and apoptosis.Following the publication of this paper, it was drawn to the Editors’ attention by a concerned reader that certain of the cell Transwell assay data in the article (featured in Figs. 3B and 6B) were strikingly similar to data that appearing in different form in another article by different authors at different research institutions, which had already been published elsewhere at the time of the present article’s submission. Owing to the fact that the contentious data in the above article had already appeared in different form in another article prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors did not reply to indicate whether or not they agreed with the retraction of the paper. The Editor apologizes to the readership for any inconvenience caused. .Glioblastomas (GBMs) are refractory to current treatments and novel therapeutic approaches need to be explored. Pro‑apoptotic tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL) is tumor‑specific and has been shown to induce apoptosis and subsequently kill GBM cells. However, approximately 50% of GBM cells are resistant to TRAIL and a combination of TRAIL with other therapeutics is necessary to induce mechanism‑based cell death in TRAIL‑resistant GBMs. The present study examined the ability of the tumor cell surface receptor, interleukin (IL)‑13 receptor α2 (IL13Rα2)‑ and epidermal growth factor receptor (EGFR)‑targeted pseudomonas exotoxin (PE) to sensitize TRAIL‑resistant GBM cells and assessed the dual effects of interleukin 13‑PE (IL13‑PE) or EGFR nanobody‑PE (ENb‑PE) and TRAIL for the treatment of a broad range of brain tumors with a distinct TRAIL therapeutic response. Receptor targeted toxins upregulated TRAIL death receptors (DR4 and DR5) and suppressed the expression of anti‑apoptotic FLICE‑inhibitory protein (FLIP) and X‑linked inhibitor of apoptosis protein (XIAP). This also led to the induction of the cleavage of caspase‑8 and caspase‑9 and resulted in the sensitization of highly resistant established GBM and patient‑derived GBM stem cell (GSC) lines to TRAIL‑mediated apoptosis. These findings provide a mechanism‑based strategy that may provide options for the cell‑mediated delivery of bi‑functional therapeutics to target a wide spectrum of TRAIL‑resistant GBMs.Renal ischemia/reperfusion (I/R) injury often occurs during multiple organ failure and sepsis, and autophagy may serve a role in I/R injury. The aim of the present study was to explore the effect of microRNA (miR)‑30a‑5p on autophagy in renal I/R injury. miR‑30a‑5p and autophagy‑related protein expression levels in renal I/R injury mouse models and in hypoxia/re‑oxygenation HK‑2 cell models were determined using reverse transcription‑quantitative PCR or western blotting; apoptosis was analyzed using flow cytometry. The effects of miR‑30a‑5p, Beclin‑1 and autophagy‑related gene 16 (ATG16) on the proliferation and autophagy of HK‑2 cells were analyzed through gain‑ and loss‑of‑function studies. miR‑30a‑5p expression was significantly decreased after renal I/R injury in the in vivo and in vitro experiments. Renal I/R injury led to upregulated expression of autophagy‑related proteins microtubule‑associated protein light chain 3 (LC3)‑Ⅱ and Beclin‑1, and downregulated expression of p62. miR‑30a‑5p overexpression decreased the number of LC3 punctae, decreased HK‑2 cell apoptosis, increased p62 expression and decreased LC3‑Ⅱ and Beclin‑1 expression. Inhibition of miR‑30a‑5p exhibited the opposite effects. A luciferase reporter assay demonstrated that miR‑30a‑5p targeted Beclin‑1. Beclin‑1 overexpression led to a significant increase in LC3‑Ⅱ expression and a decrease in p62 expression, as well as a significant increase in apoptosis. FDI-6 in vivo Beclin‑1 overexpression also increased the protein expression level of ATG16. Downregulation of Beclin‑1 decreased the expression of LC3‑Ⅱ, elevated the p62 level and decreased apoptosis. ATG16 knockdown showed similar effects as those of Beclin‑1 downregulation. In conclusion, miR‑30a‑5p was increased in renal I/R injury and might mitigate autophagy by regulating the Beclin‑1/ATG16 pathway.Hyperglycemia aggravates brain damage caused by cerebral ischemia/reperfusion (I/R) and increases the permeability of the blood‑brain barrier (BBB). However, there are relatively few studies on morphological changes of the BBB. The present study aimed to investigate the effect of hyperglycemia on BBB morphological changes following cerebral I/R injury. Streptozotocin‑induced hyperglycemic and citrate‑buffered saline‑injected normoglycemic rats were subjected to 30 min middle cerebral artery occlusion. Neurological deficits were evaluated. Brain infarct volume was assessed by 2,3,5‑triphenyltetrazolium chloride staining and BBB integrity was evaluated by Evans blue and IgG extravasation following 24 h reperfusion. Changes in tight junctions (TJ) and basement membrane (BM) proteins (claudin, occludin and zonula occludens‑1) were examined using immunohistochemistry and western blotting. Astrocytes, microglial cells and neutrophils were labeled with specific antibodies for immunohistochemistry after 1, 3 and 7 days of reperfusion.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account