-
Boll Tanner posted an update 6 months ago
This research sheds light on the potential molecular mechanisms underlying the effects of PN on stroke recovery.Kaposi’s sarcoma (KS) is an angioproliferative malignancy whose associated etiologic agent is the Kaposi’s sarcoma-associated herpesvirus (KSHV). KS is the most prevalent malignancy among HIV-infected individuals globally and is considered an AIDS-defining malignancy. The different forms of KS including HIV-associated KS, iatrogenic (immunosuppression-related) KS, and classical KS in elderly males suggest that immune cell dysregulation is among the key components in promoting KS development in KSHV-infected individuals. It is therefore expected that different cell types of the immune system likely play distinct roles in promoting or inhibiting KS development. This narrative review is focused on discussing cells of the innate and adaptive immune systems in KSHV infection and KS pathogenesis, including how these cells can be useful in the control of KSHV infection and treatment of KS.Non-Hodgkin lymphomas comprise a heterogenous group of disorders which differ in biology. Although response rates are high in some groups, relapsed disease can be difficult to treat, and newer approaches are needed for this patient population. It is increasingly apparent that the immune system plays a significant role in the propagation and survival of malignant cells. Immune checkpoint blocking agents augment cytotoxic activity of the adaptive and innate immune systems and enhance tumor cell killing. Anti-PD-1 and anti-CTLA-4 antibodies have been tested as both single agents and combination therapy. Although success rates with anti-PD-1 antibodies are high in patients with Hodgkin lymphoma, the results are yet to be replicated in those with non-Hodgkin lymphomas. Some lymphoma histologies, such as primary mediastinal B cell lymphoma (PMBL), central nervous system, and testicular lymphomas and gray zone lymphoma, respond favorably to PD-1 blockade, but the response rates in most lymphoma subtypes are low. Other agents including those targeting the adaptive immune system such as TIM-3, TIGIT, and BTLA and innate immune system such as CD47 and KIR are therefore in trials to test alternative ways to activate the immune system. Patient selection based on tumor biology is likely to be a determining factor in treatment response in patients, and further research exploring optimal patient populations, newer targets, and combination therapy as well as identifying biomarkers is needed.The remodeling of the extracellular matrix (ECM) in the parenchyma plays an important role in the development of acute respiratory distress syndrome (ARDS), a disease characterized by lung injury. Although it is clear that TGF-β1 can modulate the expression of the extracellular matrix (ECM) through intracellular signaling molecules such as Smad3, its role as a therapeutic target against ARDS remains unknown. In this study, a rat model was established to mimic ARDS via intratracheal instillation of lipopolysaccharide (LPS). A selective inhibitor of Smad3 (SIS3) was intraperitoneally injected into the disease model, while phosphate-buffered saline (PBS) was used in the control group. Animal tissues were then evaluated using histological analysis, immunohistochemistry, RT-qPCR, ELISA, and western blotting. LPS was found to stimulate the expression of RAGE, TGF-β1, MMP2, and MMP9 in the rat model. Moreover, treatment with SIS3 was observed to reverse the expression of these molecules. In addition, pretreatment with SIS3 was shown to partially inhibit the phosphorylation of Smad3 and alleviate symptoms including lung injury and pulmonary edema. These findings indicate that SIS3, or the blocking of TGF-β/Smad3 pathways, could influence remodeling of the ECM and this may serve as a therapeutic strategy against ARDS.
The involvement of cellular immunity in the development of hepatitis E virus (HEV) infection is rare. We aimed to study the roles of viral load and Th cell responses in acute hepatitis E (AHE) and HEV-related acute liver failure (HEV-ALF).
We evaluated viral load and Th1/Th2 cytokine levels in 34 patients with HEV infection, including 17 each with AHE or HEV-ALF. Seventeen healthy controls (HCs) were also included who were negative for anti-HEV IgM and IgG.
There was no significant difference in viral load and HEV RNA in the AHE and HEV-ALF groups (both
> 0.05). The Th lymphocyte levels (CD3+, CD4+) in the AHE and HEV-ALF groups were significantly higher than those in the HC group (both
< 0.05), but there was no significant difference between the AHE and HEV-ALF groups (
> 0.05). Both IFN-
and IL-10 showed gradual upward trend from the HC group to the AHE (both
< 0.01), but IFN-
showed a sharp downward trend from the AHE group to the HEV-ALF group (
< 0.01) and IL-4 showed gradual upward trend from the AHE group to the HEV-ALF group (
< 0.01).There was no significant difference in Th1 and Th2 cytokines between the HEV RNA(+) group and HEV RNA(-) group (all
> 0.05). Ziprasidone Th2 bias was observed from the AHE (ratio = 58.65) to HEV-ALF (ratio = 1.20) groups. The level of IFN-
was associated with the outcome of HEV-ALF patients.
HEV viral load was not associated with aggravation of AHE, and the HEV-ALF patients showed significant Th2 bias, which may be involved in the aggravation of AHE.
HEV viral load was not associated with aggravation of AHE, and the HEV-ALF patients showed significant Th2 bias, which may be involved in the aggravation of AHE.T follicular helper (TFH) cells are recognized as a subtype of T cells that are involved in the germinal center formation and B cell development. When dysregulated, TFH cells may represent an important mechanism that contributes to a heightened humoral response and autoantibody production in autoimmune liver diseases (AILDs). TFH cells participate in the immune response associated with AILDs by expressing surface receptors such as programmed cell death protein-1, C-X-C motif chemokine receptor 5, and inducible T cell costimulators, as well as cytokines such as interleukin-21. TFH cells also downregulate chemokine (C-C motif) receptor 7 and promote the dysregulation of the T follicular regulatory/TFH axis. This review highlights the importance of TFH cells in AILDs.