-
Franks Schaefer posted an update 6 months ago
Consanguinity was positive in 18 families of the cohort (69.0%). Seven patients showed homozygous mutations. Five patients had heterozygous mutations. There were six patients with VUS and six patients had negative WES results. Whole exome sequencing showed a high diagnostic rate in this group of children with variable neurological disorders.Neonatal diabetes (ND) appears during the first months of life and is caused by a single gene mutation. It is heterogenous and very different compared to other forms of multi-factorial or polygenic diabetes. Clinically, this form is extremely severe, however, early genetic diagnosis is pivotal for successful therapy. A large palette of genes is demonstrated to be a cause of ND, however, the mechanisms of permanent hyperglycemia are different. This review will give an overview of more frequent genetic mutations causing ND, including the function of the mutated genes and the specific therapy for certain sub-forms.Functional papers are the subject of extensive research efforts and have already become an irreplaceable part of our modern society. Among other issues, they enable fast and inexpensive detection of a plethora of analytes and simplify laboratory work, for example in medical tests. This article focuses on the molecular and structural fundamentals of paper and the possibilities of functionalization, commercially available assays and their production, as well as on current and future challenges in research in this field.
Mesenchymal stem cells (MSCs) have been extensively studied for therapeutic application in tissue engineering and regenerative medicine. Despite their promise, recent findings suggest that MSC replication during repair process may lead to replicative senescence and stem cell exhaustion. Here, we review the basic mechanisms of MSC senescence, how it leads to degenerative diseases, and potential treatments for such diseases.
Emerging evidence has shown a link between senescent MSCs and degenerative diseases, especially age-related diseases such as osteoarthritis and idiopathic pulmonary fibrosis. During these disease processes, MSCs undergo cell senescence and mediate Senescence Associated Secretory Phenotypes (SASP) to affect the surrounding microenvironment. Thus, senescent MSCs can accelerate tissue aging by increasing the number of senescent cells and spreading inflammation to neighboring cells.
Senescent MSCs not only hamper tissue repair through cell senescence associated stem cell exhaustion, but also mediate tissue degeneration by initiating and spreading senescence-associated inflammation. It suggests new strategies of MSC-based cell therapy to remove, rejuvenate, or replace (3Rs) the senescent MSCs.
Senescent MSCs not only hamper tissue repair through cell senescence associated stem cell exhaustion, but also mediate tissue degeneration by initiating and spreading senescence-associated inflammation. It suggests new strategies of MSC-based cell therapy to remove, rejuvenate, or replace (3Rs) the senescent MSCs.
Napping is a common behavior across age groups. While studies have shown a benefit of overnight sleep on memory consolidation, given differences in nap frequency, composition, and intent, it is important to consider whether naps serve a memory function across development and aging.
We review studies of the role of naps in declarative, emotional, and motor procedural memory consolidation across age groups. PD173212 Recent findings in both developmental and aging populations find that naps benefit learning of many tasks but may require additional learning or sleep bouts compared to young adult populations. These studies have also identified variations in nap physiology based on the purpose of the nap, timing of the nap, or age.
These studies lend to our understanding of the function of sleep, and the potential for naps as an intervention for those with reduced nighttime sleep or learning impairments.
These studies lend to our understanding of the function of sleep, and the potential for naps as an intervention for those with reduced nighttime sleep or learning impairments.
To present an up-to-date review and synthesis of findings about perinatal sleep development and function. I discuss landmark events in sleep ontogenesis, evidence that sleep promotes brain development and plasticity, and experimental considerations in this topic.
Mammalian sleep undergoes dramatic changes in expression and regulation during perinatal development. This includes a progressive decrease in rapid-eye-movement (REM) sleep time, corresponding increases in nonREM sleep and wake time, and the appearance of mature sleep regulatory processes (homeostatic and circadian). These developmental events coincide with periods of rapid brain maturation and heightened synaptic plasticity. The latter involve an initial experience-independent phase, when circuit development is guided by spontaneous activity, and later occurring critical periods, when these circuits are shaped by experience.
These ontogenetic changes suggest important interactions between sleep and brain development. More specifically, sleep may promote developmental programs of synaptogenesis and synaptic pruning and influence the opening and closing of critical periods of brain plasticity.
These ontogenetic changes suggest important interactions between sleep and brain development. More specifically, sleep may promote developmental programs of synaptogenesis and synaptic pruning and influence the opening and closing of critical periods of brain plasticity.
This article presents an overview of the main technologies used to estimate gait parameters, focusing on walking speed (WS).
New wearable and environmental technologies to estimate WS have been developed in the last five years. Wearable technologies refer to sensors attached to parts of the patient’s body that capture the kinematics during walking. Alternatively, environmental technologies capture walking patterns using external instrumentation. In this review, wearable and external technologies have been included.From the different works reviewed, external technologies face the challenge of implementation outside controlled facilities; an advantage that wearable technologies have, but have not been fully explored. Additionally, systems that can track WS changes in daily activities, especially at-home assessments, have not been developed.
Walking speed is a gait parameter that can provide insight into an individual’s health status. Image-based, walkways, wearable, and floor-vibrations technologies are the most current used technologies for estimating WS.