• Karlsson Andrews posted an update 6 months ago

    Programmed cell death protein 1 (PD-1) is a critical inhibitory receptor that limits excessive T cell responses. Cancer cells have evolved to evade these immunoregulatory mechanisms by upregulating PD-1 ligands and preventing T cell-mediated anti-tumor responses. Consequently, therapeutic blockade of PD-1 enhances T cell-mediated anti-tumor immunity, but many patients do not respond and a significant proportion develop inflammatory toxicities. To improve anti-cancer therapy, it is critical to reveal the mechanisms by which PD-1 regulates T cell responses. We performed global quantitative phosphoproteomic interrogation of PD-1 signaling in T cells. By complementing our analysis with functional validation assays, we show that PD-1 targets tyrosine phosphosites that mediate proximal T cell receptor signaling, cytoskeletal organization, and immune synapse formation. PD-1 ligation also led to differential phosphorylation of serine and threonine sites within proteins regulating T cell activation, gene expression, and protein translation. In silico predictions revealed that kinase/substrate relationships engaged downstream of PD-1 ligation. These insights uncover the phosphoproteomic landscape of PD-1-triggered pathways and reveal novel PD-1 substrates that modulate diverse T cell functions and may serve as future therapeutic targets. These data are a useful resource in the design of future PD-1-targeting therapeutic approaches.

    The association between obesity and outcomes in patients receiving programmed death-1/programmed death ligand-1 (PD-L1) checkpoint inhibitors has already been confirmed in pre-treated non-small cell lung cancer (NSCLC) patients, regardless of PD-L1 tumor expression.

    We present the outcomes analysis according to baseline body mass index (BMI) and BMI variation in a large cohort of metastatic NSCLC patients with a PD-L1 expression ≥50%, receiving first line pembrolizumab. We also evaluated a control cohort of metastatic NSCLC patients treated with first line platinum-based chemotherapy. DL-Buthionine-Sulfoximine Normal weight was set as control group.

    962 patients and 426 patients were included in the pembrolizumab and chemotherapy cohorts, respectively. Obese patients had a significantly higher objective response rate (ORR) (OR=1.61 (95% CI 1.04-2.50)) in the pembrolizumab cohort, while overweight patients had a significantly lower ORR (OR=0.59 (95% CI 0.37-0.92)) within the chemotherapy cohort. Obese patients had a significantlyted with chemotherapy. BMI variation is also significantly related to clinical outcomes.

    Tumor mutational burden (TMB) measurement is limited by low tumor purity of samples, which can influence prediction of the immunotherapy response, particularly when using whole-exome sequencing-based TMB (wTMB). This issue could be overcome by targeted panel sequencing-based TMB (pTMB) with higher depth of coverage, which remains unexplored.

    We comprehensively reanalyzed four public datasets of immune checkpoint inhibitor (ICI)-treated cohorts (adopting pTMB or wTMB) to test each biomarker’s predictive ability for low purity samples (cut-off 30%). For validation, paired genomic profiling with the same tumor specimens was performed to directly compare wTMB and pTMB in patients with breast cancer (paired-BRCA, n=165) and ICI-treated patients with advanced non-small-cell lung cancer (paired-NSCLC, n=156).

    Low tumor purity was common (range 30%-45%) in real-world samples from ICI-treated patients. In the survival analyzes of public cohorts, wTMB could not predict the clinical benefit of immunotherapy when tnced sensitivity for hard-to-detect variants at low-allele fraction. Therefore, pTMB could act as an invaluable biomarker in the setting of both clinical trials and practice outside of trials based on its reliable performance in mitigating the purity-related bias.

    Our data suggest that TMB characterization with targeted deep sequencing might have potential strength in predicting ICI responsiveness due to its enhanced sensitivity for hard-to-detect variants at low-allele fraction. Therefore, pTMB could act as an invaluable biomarker in the setting of both clinical trials and practice outside of trials based on its reliable performance in mitigating the purity-related bias.Acute leukemia is a constellation of rapidly progressing diseases that affect a wide range of patients regardless of age or gender. Traditional treatment options for patients with acute leukemia include chemotherapy and hematopoietic cell transplantation. The advent of cancer immunotherapy has had a significant impact on acute leukemia treatment. Novel immunotherapeutic agents including antibody-drug conjugates, bispecific T cell engagers, and chimeric antigen receptor T cell therapies have efficacy and have recently been approved by the US Food and Drug Administration (FDA) for the treatment of patients with acute leukemia. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop a clinical practice guideline composed of consensus recommendations on immunotherapy for the treatment of acute lymphoblastic leukemia and acute myeloid leukemia.

    Sterile processing departments (SPDs) play a crucial role in surgical safety and efficiency. SPDs clean instruments to remove contaminants (decontamination), inspect and reorganise instruments into their correct trays (assembly), then sterilise and store instruments for future use (sterilisation and storage). However, broken, missing or inappropriately cleaned instruments are a frequent problem for surgical teams. These issues should be identified and corrected during the assembly phase.

    A work systems analysis, framed within the Systems Engineering Initiative for Patient Safety (SEIPS) model, was used to develop a comprehensive understanding of the assembly stage of reprocessing, identify the range of work challenges and uncover the inter-relationship among system components influencing reliable instrument reprocessing.

    The study was conducted at a 700-bed academic hospital in the Southeastern United States with two reprocessing facilities from October 2017 to October 2018. Fifty-six hours of direct observations, 36 interviews were used to iteratively develop the work systems analysis.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account