• Ellis White posted an update 2 months ago

    The central relevance of cellular heterogeneity to biological phenomena raises the rational needs for analytical techniques with single-cell resolution. Here, we developed a single-cell FTIR microspectroscopy-based method for the quantitative evaluation of cellular heterogeneity by calculating the cell-to-cell similarity distance of the infrared spectral data. Based on this method, we revealed the infrared phenotypes might reflect the dynamic heterogeneity changes in the cell population during the adipogenic differentiation of the human mesenchymal stem cells. These findings provide an alternative label-free optical approach for quantifying the cellular heterogeneity, and the combination with other single-cell analysis tools will be very helpful for understanding the genotype-to-phenotype relationship in cellular populations.A solid-phase platform for the precise and sequential synthesis of enterobactin analogues is described. This chemistry unites the power of solid-phase peptide synthesis with the unique opportunities and applications offered by siderophore chemistry. Here, a series of hybrid enterobactin hydroxamate/catecholate (HEHC) analogues were synthesized using both catechols and amino acid derived hydroxmate chelators. The HEHC analogues were evaluated for their ability to bind free iron and to promote growth in siderophore-auxotrophic mutant bacteria. We find that, in contrast to S. aureus or E. coli, a number of HEHC analogues promote growth in P. aeruginosa and structure-activity relationships (SARs) exist for the growth promotion via HEHC analogues in this organism.O2- and O4-alkylated thymidine lesions are known to be poorly repaired and persist in mammalian tissues. To understand how mammalian cells sense the presence and regulate the repair of these lesions, we employed a quantitative proteomic method to discover regioisomeric O2- and O4-n-butylthymidine (O2- and O4-nBudT)-binding proteins. We were able to identify 21 and 74 candidate DNA damage recognition proteins for O2-nBudT- and O4-nBudT-bearing DNA probes, respectively. Among these proteins, DDB1 and DDB2 selectively bind to O2-nBudT-containing DNA, whereas three high-mobility group (HMG) proteins (i.e., HMGB1, HMGB2, and mitochondrial transcription factor A (TFAM)) exhibit preferential binding to O4-nBudT-bearing DNA. We further demonstrated that TFAM binds directly and selectively with O4-alkyldT-harboring DNA, and the binding capacity depends mainly on the HMG box-A domain of TFAM. We also found that TFAM promotes transcriptional mutagenesis of O4-nBudT and O4-pyridyloxobutylthymidine, which is a DNA adduct induced by tobacco-specific N-nitrosamines, in vitro and in human cells. Together, we explored, for the first time, the interaction proteomes of O-alkyldT lesions, and our study expanded the functions of TFAM by revealing its capability in the recognition of O4-alkyldT-bearing DNA and uncovering its modulation of transcriptional mutagenesis of these lesions in human cells.This work demonstrated a new method for electrochemical detection of carbon black particles based on impact electrochemistry that was capable of selective detection of carbon black from the insulating oxide particles. We systematically studied the electrochemical collision events with carbon black particle suspension solution (pH 7.0 phosphate buffer) at varying carbon black concentrations using a convective condition and a gold microelectrode. We evaluated the effect of bias potential on the number and magnitude of collision spikes by changing the applied potential in chronoamperometry experiments. Our results showed that the biased potential of +0.4 V was the most suitable potential among the tested potential biases. Current blips were observed in the amperometric i-t response, and the spike numbers scaled linearly with the concentration of carbon black particles in the range of 2.5-20 μM (i.e., mass/volume concentration of 0.03 to 0.24 mg L-1) with the lowest detection limit of 0.396 μM (i.e., mass/volume concentration of 0.00475 mg L-1). The selective detection of carbon particles in the presence of representative poorly conductive oxide particles in our experimental conditions was achieved. The sensing mechanism of the sensitive and selective detection of carbon black particles is proposed. This work provides the basis for the development of powerful electroanalytical methods and technologies for the detection and classification of carbon particles in varying environmental conditions such as coalmines, engineered carbon particle factories, and coal power plants.We present a prototype of a vertical-downward configuration of an inductively coupled plasma mass spectrometer (ICPMS) allowing the sample introduction from the top. With this novel approach to orient the ICP downward, we aim to expand the sample transport capabilities in ICPMS especially for the transport of droplets or particles with a final goal to analyze individual cells. find more Because of this gravity-assisted sampling approach, the transport of larger sized droplets, that is, droplets that would be difficult to transport into a horizontally oriented ICPMS, becomes possible and, furthermore, becomes independent of the droplets’ size or size distribution. We demonstrate that droplets of an initial size of 70 μm can be successfully transported into the plasma at dispensing frequencies up to 1 kHz without the need for a desolvation device. In addition, we observed that the implementation of a desolvation device, that is, a gas-exchange device (GED), can improve the detection efficiencies (DEs). Compared to operating conditions that are commonly reported for ICPMS experiments, significantly different optimization parameters (radio frequency power and gas flow rates) were tested in the presented experiments here while instrument type-specific DEs were obtained.Carbodiimide-catalyzed carboxyl and amine conjugation (amidation) has been widely used to protect carboxyl groups. N-(3-(Dimethylamino)propyl)-N’-ethylcarbodiimide (EDC) is the most common carbodiimide reagent in protein chemistry due to its high catalytic efficiency in aqueous media. The reaction has also been applied in different proteomic studies including protein terminomics, glycosylation, and interaction. Herein, we report that the EDC-catalyzed amidation could cause a +155 Da side modification on the tyrosine residue and severely hamper the identification of Tyr-containing peptides. We revealed the extremely low identification rate of Tyr-containing peptides in different published studies employing the EDC-catalyzed amidation. We discovered a +155 Da side modification occurring specifically on Tyr and decoded it as the addition of EDC. Consideration of the side modification in a database search enabled the identification of 13 times more Tyr-containing peptides. Furthermore, we successfully developed an efficient method to remove the side modification.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account