-
Lamb Charles posted an update 5 months, 4 weeks ago
Differential scanning fluorimetry (DSF) is a method used for assessing the interaction of ligands with proteins. In most cases binding of a ligand to proteins tends to increase the melting temperature (Tm) of the protein involved. However, in the case of strigolactone receptors (e.g., D14, AtD14, DAD2, RMS3) from plants, the Tm tends to be reduced in the presence of strigolactones. This is likely due to increased flexibility of the receptors in the presence of hormone ligands.DSF experiments are simple, fast, amenable to high-throughput formats, and cost effective. They have therefore gained in popularity, including within the field of SL signaling. Typically in DSF the receptor protein is purified and incubated with the ligand (strigolactone, agonist, or antagonist) and a (fluorescent) reporter dye. The mixture is then placed in a quantitative PCR instrument and subjected to an increasing temperature gradient. Changes in fluorescence are recorded along the gradient, as the dye interacts with unfolded portions of the protein becoming accessible when the protein “melts”. Differences in the temperature at which the protein unfolds in the absence and in the presence of the ligand are interpreted as indicating interactions between the ligand and the receptor.In this chapter, we will describe a method we set up to synthesize two profluorescent strigolactone (SL) mimic probes (GC240 and GC242) and the optimized protocols developed to study the enzymatic properties of various strigolactone receptors. The Arabidopsis AtD14 SL receptor is used here as a model for this purpose.Understanding the biological background of strigolactone (SL) structural diversity and the SL signaling pathway at molecular level requires quantitative and sensitive tools that precisely determine SL dynamics. Such biosensors may be also very helpful in screening for SL analogs and mimics with defined biological functions.Recently, the genetically encoded, ratiometric sensor StrigoQuant was developed and allowed the quantification of the activity of a wide concentration range of SLs. StrigoQuant can be used for studies on the biosynthesis, function and signal transduction of this hormone class.Here, we provide a comprehensive protocol for establishing the use of StrigoQuant in Arabidopsis protoplasts. We first describe the generation and transformation of the protoplasts with StrigoQuant and detail the application of the synthetic SL analogue GR24. We then show the recording of the luminescence signal and how the obtained data are processed and used to assess/determine SL perception.The binding of strigolactones to their receptor, the α/β hydrolase DWARF14 (D14), leads to the modulation of transcriptional activity by destabilization of specific transcriptional corepressors via proteasomal degradation. Subsequently, strigolactones also promote D14 degradation by the same pathway. Here we describe an innovative quantitative bioassay based on Arabidopsis transgenic lines expressing AtD14 fused to the firefly luciferase, developed to identify new strigolactone analogs capable to activate the strigolactone signaling.Strigolactones play a potent role in the rhizosphere as a signal to symbiotic microbes including arbuscular mycorrhizal fungi and rhizobial bacteria. This chapter outlines guidelines for application of strigolactones to pea roots to influence symbiotic relationships, and includes careful consideration of type of strigolactones applied, solvent use, frequency of application and nutrient regime to optimize experimental conditions.Arbuscular mycorrhiza is an ancient symbiosis between most land plants and fungi of the Glomeromycotina, in which the fungi provide mineral nutrients to the plant in exchange for photosynthetically fixed organic carbon. Strigolactones are important signals promoting this symbiosis, as they are exuded by plant roots into the rhizosphere to stimulate activity of the fungi. In addition, the plant karrikin signaling pathway is required for root colonization. Understanding the molecular mechanisms underpinning root colonization by AM fungi, requires the use of plant mutants as well as treatments with different environmental conditions or signaling compounds in standardized cocultivation systems to allow for reproducible root colonization phenotypes. Here we describe how we set up and quantify arbuscular mycorrhiza in the model plants Lotus japonicus and Brachypodium distachyon under controlled conditions. We illustrate a setup for open pot culture as well as for closed plant tissue culture (PTC) containers, for plant-fungal cocultivation in sterile conditions. Furthermore, we explain how to harvest, store, stain, and image AM roots for phenotyping and quantification of different AM structures.As a bryophyte and model plant, the moss Physcomitrium (Physcomitrella) patens (P. patens) is particularly well adapted to hormone evolution studies. Gene targeting through homologous recombination or CRISPR-Cas9 system, genome sequencing, and numerous transcriptomic datasets has allowed for molecular genetics studies and much progress in Evo-Devo knowledge. As to strigolactones, like for other hormones, both phenotypical and transcriptional responses can be studied, in both WT and mutant plants. However, as in any plant species, medium- to large-scale phenotype characterization is necessary, owing to the general high phenotypic variability. Therefore, many biological replicates are required. This may translate to large amount of the investigated compounds, particularly expensive (or difficult to synthesize) in the case of strigolactones. These issues prompted us to improve existing methods to limit the use of scarce/expensive compounds, as well as to simplify subsequent measures/sampling of P. patens. We hence scaled up well-tried experiments, in order to increment the number of tested genotypes in one given experiment.In this chapter, we will describe three methods we set up to study the response to strigolactones and related compounds in P. patens.Growth and development of plant roots are highly dynamic and adaptable to environmental conditions. They are under the control of several plant hormone signaling pathways, and therefore root developmental responses can be used as bioassays to study the action of plant hormones and other small molecules. ITF2357 In this chapter, we present different procedures to measure root traits of the model plant Arabidopsis thaliana. We explain methods for phenotypic analysis of lateral root development, primary root length, root skewing and straightness, and root hair density and length. We describe optimal growth conditions for Arabidopsis seedlings for reproducible root and root hair developmental outputs; and how to acquire images and measure the different traits using image analysis with relatively low-tech equipment. We provide guidelines for a semiautomatic image analysis of primary root length, root skewing, and root straightness in Fiji and a script to automate the calculation of root angle deviation from the vertical and root straightness.