• Lundqvist Owen posted an update 6 months, 4 weeks ago

    Investigations of immune-mediated inflammatory diseases across several organ systems have offered important insight into the COVID-19 disease course. Overall, these studies have provided reassurance to patients and clinicians while also identifying groups who may be at higher risk for poor outcomes.

    Investigations of immune-mediated inflammatory diseases across several organ systems have offered important insight into the COVID-19 disease course. Overall, these studies have provided reassurance to patients and clinicians while also identifying groups who may be at higher risk for poor outcomes.Low-temperature solution-processed InGaZnO (IGZO) thin film transistors (TFTs) have recently attracted significant attention as the next-generation flexible display TFTs, owing to their high transparency, high electrical performance, low-cost fabrication, and large-area scalability. However, solution-processed amorphous IGZO TFTs have several drawbacks, such as poor film quality or low stability, and have been studied with view to improving the device performance. One of the critical components determining device characteristics is the metallization process, which we systematically studied using aluminum (Al) source and drain electrodes. The electrical properties were measured for different channel lengths and evaluated using the threshold voltage (Vth) and subthreshold swing (SS). Al electrodes directly affect the channel region, enhancing the electron density because of the doping effect from Al and oxygen vacancy-related oxidation of Al and causing an abnormal negative shift ofVth, which is confirmed by the component analysis via various spectroscopies. To understand and improve the TFT characteristics, we conducted a low-temperature post-annealing process and polymer passivation and succeeded in movingVthfrom over 150 V to near 0 V and remarkably improved SS. This study discovered that the influence of source-drain metallization on the channel region determines the device characteristics through the close relation between metal oxidation and the number of oxygen vacancies.We theoretically study the polariton multistability in a solid state based optomechanical resonator embedded with a quantum well and aχ(2)second order nonlinear medium. The excitonic transition inside the quantum well is strongly coupled to the optical cavity mode. The polariton formed due to the mixing of cavity photons and exciton states are coupled to the mechanical mode which gives rise to the bistable behavior. A transition from bistability to tristability occurs in the presence of a strongχ(2)nonlinearity. Switching between bistability and tristability can also be controlled using exciton-cavity and optomechanical coupling making the system highly tunable. Tristability appears at low input power making it a suitable candidate for polaritonic devices which requires low input power.Supercapacitors, as promising energy storage candidates, are limited by their unsatisfactory anodes. Herein, we proposed a strategy to improve the electrochemical performance of iron oxide anodes by spinel-framework constraining. We have optimized the anode performance by adjusting the doping ratio of Fe (II/III) self-redox pairs. Structure and electronic state characterizations reveal that the NixFe3-xO4was composed of Fe (II/III) and Ni (II/III) pairs in lattice, ensuring a flexible framework for the reversible reaction of Fe (II/III). Typically, when the ratio of Fe (II/III) is 0.911 (Fe (II/III)-0.91/1), the NixFe3-xO4anode shows a remarkable electrochemical performance with a high specific capacitance of 1694 F g-1at the current density of 2 A g-1and capacitance retention of 81.58%, even at a large current density of 50 A g-1. In addition, the obtained material presents an ultra-stable electrochemical performance, and there is no observable degradation after 5000 cycles. Moreover, an assembled asymmetric supercapacitor of Ni-Co-S@CC//NixFe3-xO4@CC presents a maximum energy density of 136.82 Wh kg-1at the power density of 850.02 W kg-1. When the power density was close to 42 500 W kg-1, the energy density was still maintained 63.75 Wh kg-1. The study indicates that inherent performance of anode material can be improved by tuning the valence charge of active ions.Traditional optical switches relying on the weak, volatile thermo-optic or electro-optic effects of Si or SiN waveguides show a high consumption and large footprint. In this paper, we reported an electric-driven phase change optical switch consisting of a Si waveguide, Ge2Sb2Te5(GST) thin film and graphene heater suitable for large-scale integration and high-speed switching. The reversible transition between the amorphous and crystalline states was achieved by applying two different voltage pulses of 1.4 V (SET) and 4 V (RESET). The optical performance of the proposed switch showed a high extinction ration of 44-46 dB in a wide spectral range (1525-1575 nm), an effective index variation of Δneff = 0.49 and a mode loss variation of Δα = 15 dBμm-1at the wavelength of 1550 nm. In thermal simulations, thanks to the ultra-high thermal conductivity of graphene, the proposed switch showed that the consumption for the SET process was only 3.528 pJ with a 1.4 V pulse of 5 ns, while a 4 V pulse of 1.5 ns was needed for RESET process with a consumption of 1.05 nJ. Our work is helpful to analyze the thermal-conduction phase transition process of on-chip phase change optical switches, and the design of the low-energy-consumption switch is conducive to the integrated application of photonic chips.Na2Ni2TeO6has a layered hexagonal structure with a honeycomb lattice constituted by Ni2+and a chiral charge distribution of Na+that resides between the Ni layers. In the present work, the antiferromagnetic (AFM) transition temperature of Na2Ni2TeO6is confirmed atTN≈ 27 K, and further, it is found to be robust up to 8 T magnetic field and 1.2 GPa external pressure; and, without any frequency-dependence. (R,S)-3,5-DHPG datasheet Slight deviations from nominal Na-content (up to 5%) does not seem to influence the magnetic transition temperature,TN. Isothermal magnetization curves remain almost linear up to 13 T. Our analysis of neutron diffraction data shows that the magnetic structure of Na2Ni2TeO6is faithfully described by a model consisting of two phases described by the commensurate wave vectorsk→c,0.500and0.500.5, with an additional short-range order component incorporated in to the latter phase. Consequently, a zig-zag long-range ordered magnetic phase of Ni2+results in the compound, mixed with a short-range ordered phase, which is supported by our specific heat data.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account