• Davenport Bean posted an update 6 months, 3 weeks ago

    In this study, an atmospheric nitrogen plasma jet generated by a custom-built micro-plasma device was analyzed at room temperature by continuous wave and pulse EPR spectroscopy in real time. Transiently formed nitrogen atoms were detected without the necessity to use spin-traps or other reagents for their stabilization. In contrast to results from optical emission spectroscopy, only signals from the 4S ground state of 14N and 15N could be detected. EPR data analysis revealed an isotropic g value of 1.9971 and isotropic hyperfine coupling constants of a(14N) = (10.47 ± 0.02) MHz and a(15N) = (14.69 ± 0.02) MHz. Moreover, lifetime and relaxation data could be determined; both are discussed in terms of spectral widths and actual concentrations of the transiently formed nitrogen species within the plasma jet. The data show that the lifetimes of atomic nitrogen and charged particles such as N+ must be different, and for the latter below the observation time window of EPR spectroscopy. We demonstrate that the real-time (pulsed) EPR technique is a fast and reliable alternative to detect atomic nitrogen in atmospheric pressure plasma jets. The method may be used for a continuous monitoring of the quality of plasma jets.Following our study on hydrogen-bonded (HB) complexes , the physical nature of interaction-induced (non)linear optical properties of another important class of molecular complexes, namely halogen-bonded (XB) systems, was analyzed in this study. The excess electronic and nuclear relaxation (hyper)polarizabilities of nine representative XB complexes covering a wide range of halogen-bond strengths were computed. The partitioning of the excess properties into individual interaction-energy components (electrostatic, exchange, induction, dispersion) was performed by using the variational-perturbational energy decomposition scheme at the MP2/aug-cc-pVTZ level of theory and further supported by calculations with the SCS-MP2 method. In the case of the electronic interaction-induced properties, the physical composition of Δαel and Δγel was found to be very similar for the two types of bonding, despite the different nature of the binding. For Δβel, the XB complexes exhibit a more systematic interplay of interaction-energy contributions compared to the HB systems studied in the previous work. Our analysis revealed that the patterns of interaction-energy contributions to the interaction-induced nuclear-relaxation contributions to the linear polarizability and the first hyperpolarizability are very similar. PT-100 order For both properties the exchange repulsion term is canceled out by the electrostatic and delocalization terms. The physical composition of these contributions is analogous to those observed for the HB complexes.The ratiometric fluorescence technique is of great interest due to its visualization characteristics. The construction of a reliable fluorescent ratiometric nanoprobe for high-sensitivity visual quantification is highly sought after but it is limited by poor stability and controllability. Herein, we report a robust dual-emissive quantum dot nanohybrid with precise color tunability and demonstrate its potential as a two-signal-change ratiometric probe for visual detection. A novel assembly strategy was developed for spatially implanting hydrophobic green and red quantum dots (QDs) into a silica scaffold to form a dual-emissive hierarchical fluorescent silica nanohybrid. The fluorescence intensity ratio and color of the nanohybrid were precisely tailored by altering the amounts of green and red QDs. Particularly, after the alkylsilane-mediated phase transfer and exterior silica shell growth, the nanohybrid exhibited the well-preserved fluorescence features of the original QDs and robust optical/colloid stability. An inner filter-based ratiometric nanoprobe for the visual determination of melamine was ultimately devised by combining the spectra-overlapped two-colored fluorescent nanohybrid with analyte-specific gold nanoparticles. Furthermore, based on the reversible fluorescence signal changes in two-colored QDs induced by melamine, a logic gate strategy for melamine monitoring was constructed. The newly developed fluorescent ratiometric nanoprobe shows great prospects for the visual and quantitative determination of analytes in a complex biological matrix.In inorganic-organic perovskites, the three-dimensional arrangement of the organic group results in more subtle balance of charge, spin and space, thereby providing an attractive route toward new multiferroics. Here we report the existing of multiple ferroic orderings in inorganic-organic layered perovskites with relative strong hydrogen bond ordering of the organic chains intra plane. In addition, the inter plane in perovskite is stacking via van der Waals force. However, such magnetoelectric coupling properties for this compound have not been reported since it is difficult to characterize the properties in single crystals since most of the hybrid perovskites are usually deliquescent and unstable when exposed to air. To deal with these problems, we synthesized a (CH3NH3)2CuCl4 single crystal by using a simple evaporation technique, and demonstrated ferroelectric, magnetic and magneto-electric properties of (CH3NH3)2CuCl4. The internal hydrogen bonding of easily tunable organic unit combined with 3d transition-metal layers in such hybrid perovskites make (CH3NH3)2CuCl4 a multiferroic crystal with magnetoelectrical coupling and offer an new way to engineer multifunctional multiferroic.In the research and development of new drugs, theoretical and computational studies play an increasingly important role in discriminating native and decoy structures by their binding free energies. Predicting the binding free energy using the molecular mechanics/Poisson-Boltzmann (Generalized Born) surface area (MM/PB(GB)SA) methods to identify the native structure as the lowest-energy conformation is more theoretically rigorous than most scoring functions, but the main challenge of this method is the calculation of the entropic contribution. In this study, we add the entropic contribution to the MM/PBSA and two MM/GBSA (GBHCT and GBOBC1) models using the interaction entropy (IE) method. We then systemically evaluate the performance of these methods in recognizing the native structures by predicting the binding affinities of 176 protein-ligand and protein-protein systems of the Bcl-2 family. By calculating a series of statistical metrics, sensitivity, specificity, accuracy, Matthews correlation coefficient, the G-mean, and the receiver operating characteristic (ROC) curve, we find that the ability to discern the native structure from a decoy ensemble is improved significantly by the modification of the binding free energy using the IE method in both protein-ligand and protein-protein systems.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account