-
Camp Geisler posted an update 6 months, 1 week ago
Metabolomic and genetic analysis of key signaling and metabolic pathways supported redox and mitochondrial stress-response signaling during early development as a mechanism for establishing these persistent alterations. Our results highlight the importance of early-life exposures to environmental pollutants, especially in the context of exposure to chemicals that target mitochondria.
GPR87 is a G-protein receptor that is specifically expressed in tumour cells, such as lung cancer, and rarely expressed in normal cells. GPR87 is a promising target for cancer therapy, but its ligand is controversial. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer therapy in which a photosensitiser, IRDye700DX (IR700), binds to antibodies and specifically destroys target cells by irradiating them with near-infrared-light. Here, we aimed to develop a NIR-PIT targeting GPR87.
We evaluated the expression of GPR87 in resected specimens of lung cancer and malignant pleural mesothelioma (MPM) resected at Nagoya University Hospital using immunostaining. Humanised anti-GPR87 antibody (huGPR87) was generated by introducing CDRs from mouse anti-GPR87 antibody generated by standard hybridoma method. HuGPR87 was conjugated with IR700 and the therapeutic effect of NIR-PIT was evaluated in vitro and in vivo using lung cancer or MPM cell lines.
Among the surgical specimens, 54% of lung cancer and 100% of MPM showed high expression of GPR87. It showed therapeutic effects on lung cancer and MPM cell lines in vitro, and showed therapeutic effects in multiple models in vivo.
These results suggest that NIR-PIT targeting GPR87 is a promising therapeutic approach for the treatment of thoracic cancer.
This research was supported by the Program for Developing Next-generation Researchers (Japan Science and Technology Agency), KAKEN (18K15923, 21K07217, JSPS), FOREST-Souhatsu, CREST (JST).
This research was supported by the Program for Developing Next-generation Researchers (Japan Science and Technology Agency), KAKEN (18K15923, 21K07217, JSPS), FOREST-Souhatsu, CREST (JST).
An ideal animal model to study SARS-coronavirus 2 (SARS-CoV-2) pathogenesis and evaluate therapies and vaccines should reproduce SARS-CoV-2 infection and recapitulate lung disease like those seen in humans. The angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS-CoV-2, but mice are resistant to the infection because their ACE2 is incompatible with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein .
SARS-CoV-2 was passaged in BALB/c mice to obtain mouse-adapted virus strain. Complete genome deep sequencing of different generations of viruses was performed to characterize the dynamics of the adaptive mutations in SARS-CoV-2. Indirect immunofluorescence analysis and Biolayer interferometry experiments determined the binding affinity of mouse-adapted SARS-CoV-2 WBP-1 RBD to mouse ACE2 and human ACE2. Finally, we tested whether TLR7/8 agonist Resiquimod (R848) could also inhibit the replication of WBP-1 in the mouse model.
The mouse-adapted strain WBP-1 showed increased ince (2020FCA046) and Robert A. Welch Foundation (C-1565).
This research was funded by the National Key Research and Development Program of China (2020YFC0845600) and Emergency Science and Technology Project of Hubei Province (2020FCA046) and Robert A. Welch Foundation (C-1565).Cholangiocarcinoma (CCA) is an aggressive and multifactorial malignancy of the biliary tract. The carcinogenesis of CCA is associated with genomic and epigenetic abnormalities, as well as environmental effects. However, early clinical diagnosis and reliable treatment strategies of CCA remain unsatisfactory. Multiple compartments of the tumor microenvironment significantly affect the progression of CCA. Tumor-associated macrophages (TAMs) are a type of plastic immune cells that are recruited and activated in the CCA microenvironment, especially at the tumor invasive front and perivascular sites. TAMs create a favorable environment that benefits CCA growth by closely interacting with CCA cells and other stromal cells via releasing multiple protumor factors. In addition, TAMs exert immunosuppressive and antichemotherapeutic effects, thus intensifying the malignancy. Targeting TAMs may provide an improved understanding of, and novel therapeutic approaches for, CCA. This review focuses on revealing the interplay between TAMs and CCA.In veterinary medicine, inflammation in swine is evaluated principally by clinical signs. This method is often unreliable when assessing large animal populations because of inconsistent interpretations of clinical observations. This study examined whether changes in miRNA expression can predict the severity of the inflammatory response in swine after administration of Escherichia coli lipopolysaccharide (LPS). Whole blood from swine challenged with LPS at 0.125 μg/kg to 2.0 μg/kg body weight was collected at 0, 1, 3, and 8 h post LPS-challenge. Mature miRNAs were extracted from plasma and quantitative real-time-PCR (qRT-PCR) was used to evaluate the 84 most abundant swine miRNAs found in plasma. The miRNA changes in expression were assessed using the comparative CT Method (ΔΔCT method) for normalization with an exogenous control. check details The results revealed that expression of ssc-let-7e-5p, ssc-mir-22-3p, and ssc-miR-146a-5p were the most significantly changed miRNA over the time course. At 1 h post-LPS, ssc-let-7e-5p decreased as the LPS dosage levels increased from 0.125 to 1.0 μg/kg. Similarly, as the LPS doses increased from 0.125 to 0.5 μg/kg, ssc-miR-22-3p levels significantly decreased at 1 h post-LPS. In the 2.0 μg/kg LPS, ssc-miR-146a-5p levels increased between 0 and 3 h post-LPS; however, expression was downregulated with a 145 % decrease from 3 to 8 h. The three miRNA biomarkers suggest potentially useful surrogate endpoints for the evaluation of inflammatory and endotoxemia responses in swine.Bacteria have evolved a variety of effector proteins to facilitate their survival and proliferation within the host environment. Continuous competition at the host-pathogen interface has empowered these effectors with unique mechanism and high specificity toward their host targets. The rich repertoire of bacterial effectors has thus provided us an attractive toolkit for investigating various cellular processes, such as signal transductions. With recent advances in protein chemistry and engineering, we now have the capability for on-demand control of protein activity with high precision. Herein, we review the development of chemically engineered bacterial effectors to control kinase-mediated signal transductions, inhibit protein translation, and direct genetic editing within host cells. We also highlight future opportunities for harnessing diverse prokaryotic effectors as powerful tools for mechanistic investigation and therapeutic intervention of eukaryotic systems.