• Maynard Winstead posted an update 6 months, 3 weeks ago

    The TiO2 catalyst was still intact as a film, and iron leaching was also occurring from the beads even after recycling, thus confirming their long-term durability in terms of dual effect. The stability and durability of the composite were confirmed by characteristic analysis such as SEM/EDS. Mineralization of PCM was concluded through the estimation of degradation by-products using GC-MS analysis followed by estimation of nitrate and nitrite ions.Recent attention on the lanthanides (Ln) contaminant such as lanthanum (La) and neodymium (Nd) extensively used in industry has aroused the great desire for the effective adsorbent. Biochar, relying on its high selectivity and optional ease, is regarded as a promising adsorbent for lanthanides removal although the evaluation of the efficiency and mechanism of La(III) and Nd(III) adsorption on biochar still lags. Here, we investigated the aqueous adsorption processes through SEM, TEM, EDS, FTIR and Raman spectra, XPS, and batch experiments. The porous structure of biochar and the complex functional groups on its surface contributed to the La(III) and Nd(III) removal processes. The kinetic of La(III) and Nd(III) adsorption agreed well with the pseudo-second-order kinetic model. The adsorption capacity showed a strong positive correlation with pH value. However, it was only slightly altered and robust in La(III) and Nd(III) adsorption respectively. The isotherm results reflected significant fitting to the Sips model as well as Langmuir and Freundlich model. Thermodynamic demonstrated the spontaneity, endothermic nature, and temperature favor of the adsorptions on biochar surface (La ΔH0=35.39 (kJ/Mol), ΔS0=104.71(J*Mol-1*K-1) and ΔG0 less then 0; Nd ΔH0=16.71(KJ/mol), ΔS0=119.41(J*Mol-1*K-1) and ΔG0 less then 0). Both the La(III) and Nd(III) removal processes combined physical and chemical adsorptions. Therefore, biochar could be a potential green material for the lanthanum and neodymium adsorption with high efficiency.In this paper, combined with iron-carbon micro-electrolysis-Fenton method, the sludge was adjusted, and the cracking performance and dewatering performance of the sludge were studied. RU.521 in vivo Single factor experiments show that when the amount of iron powder is 1.2 g/L, the reaction time is 45 min, H2 O 2When the dosage was 4.2 g/L, the protein and polysaccharide content in the sludge decreased by 46.8 and 20.6, respectively. Compared with the original sludge %. Compared with the original sludge, the COD of the supernatant of the solution increased by 10.1%. The minimum moisture content of the treated sludge cake was 69%, and the SRF value was significantly reduced.The lowest value is 2.687×10 12 m/kg. During the micro-electric dust removal sludge, the Fe 2+can form a Fenton reagent with H2 O 2, thereby reducing the amount of additional iron powder that needs to be added in the conventional Fenton reaction. Three-dimensional fluorescence spectroscopy analysis showed that the humic acid and fulvic acid in the supernatant of the iron-carbon micro-electrolysis-Fenton conditioning solution increased more than after single electrolysis, indicating that the dehydration performance of the sludge was better.The Fenton reagent is formed , thereby reducing the amount of iron powder that needs to be added extra in the conventional Fenton reaction.Heavy metal accumulation has much increased in edible parts of fresh fruits and vegetables due to use of industrial waste/effluent, and wastewater. In the current work, sewage wastewater was reclaimed through a column filled with sand having a mesh size of 0.5 mm and its effect was investigated on concentration of different heavy metals, vegetative growth, and yield of okra and tomato. The use of unfiltered sewage wastewater (UFSW) had considerably higher concentrations of heavy metals but it substantially increased plant height, leaf number, and leaf area in both okra and tomato plants in contrast to filtered sewage wastewater (FSW). The application of UFSW resulted in a significantly higher accumulation of lead (Pb), nickel (Ni), iron (Fe), and copper (Cu) in roots and edible parts of okra and tomato as compared with FSW treatment. However, FSW and UFSW did not significantly influence concentrations of chromium (Cr) and cadmium (Cd) in roots and edible parts of both okra and tomato. In conclusion, sand column filtration technique could be efficiently used for the reclamation of sewage wastewater, and reduction of various heavy metals present in sewage wastewater-irrigated crops.Solar still is one of the economic and eminent ways of desalinating the available sea/brackish water into potable water. However, the distillate output from the solar still is moderate and various researches are being conducted to improve the productivity of solar still. In this research, a novel bottom finned (solid and hollow) absorber basin is designed and developed to enhance the heat transfer between absorber and phase change material (PCM) which further improves the freshwater productivity from the solar still. The results of the investigation are compared with the conventional solar still. The three single-slope solar stills considered developed for evaluating the effect of modification on the freshwater productivity are (i) conventional solar still (CSS), (ii) solar still with hollow finned absorber inserted in energy storage (SSHFES), and (c) solar still with solid finned absorber inserted in energy storage (SSSFES). The investigation results reported that the SSHFES has greater productivity when compared with the SSSFES and CSS. The freshwater productivity from the SSHFES is 4085 mL/m2 day, whereas the freshwater productivity from SSSFES and CSS is 3485 mL/m2 day and 2885 mL/m2 day, respectively. The efficiency of SSHFES and SSSFES is increased by 41.67% and 20.81% relative to the CSS. It is observed from economic analysis that the cost per liter (CPL) freshwater produced by SSHFES, SSSFES and CSS is about ₹ 2.3 ($ 0.032), ₹ 2.5 ($ 0.034), and ₹2.6 ($ 0.036), respectively. The payback periods of SSHFES, SSSFES, and CSS is 6.3 months, 6.8 months, and 7.1 months, respectively. Also, the enviroeconomic analysis conferred that the carbon credit gained from the SSHFES is $189.28 whereas SSSFES and CSS gained only $158.2 and $132.02. Based on the current study, it is observed that the solar still with hollow finned absorber inserted in energy storage (SSHFES) is effective when compared to others and it is viable for potable water production at cheaper costs.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account