• Coffey Elliott posted an update 6 months, 3 weeks ago

    velopment for pSS.

    SSMD can regulate multiple biological processes by virtue of its multiple active components, thus showing prominent advantage in the treatment of pSS. find more The discovery of active ingredients and targets in SSMD provides valuable resources for drug research and development for pSS.

    Hyperthermia is one of the promising cancer treatment strategies enabled by local heating with the use of tumor-targeting magnetic nanoparticles (MNP) under a non-invasive magnetic field. However, one of the remaining challenges is how to achieve therapeutic levels of heat (without causing damages to regular tissues) in tumors that cannot be effectively treated with anti-tumor drug delivery.

    In this work, we report a facile method to fabricate magnetic nanorods for hyperthermia by one-step wet chemistry synthesis using 3-Aminopropyltrimethoxysilane (APTMS) as the shape-controlling agent and ferric and ferrous ions as precursors. By adjusting the concentration of APTMS, hydrothermal reaction time, ratios of ferric to ferrous ions, magnetic nanorods with aspect ratios ranging from 4.4 to 7.6 have been produced. At the clinically recommended field strength of 300 Oe (or less) and the frequency of 184kHz, the specific absorption rate (SAR) of these nanorods is approximately 50 % higher than that of commercial Bionized NanoFerrite particles.

    This increase in SAR, especially at low field strengths, is crucial for treating deep tumors, such as pancreatic and rectal cancers, by avoiding the generation of harmful eddy current heating in normal tissues.

    This increase in SAR, especially at low field strengths, is crucial for treating deep tumors, such as pancreatic and rectal cancers, by avoiding the generation of harmful eddy current heating in normal tissues.

    Methylglyoxal (MG) is a highly reactive dicarbonyl precursor for the formation of advanced glycation end products (AGEs) associated with age-related diseases, including diabetes and its complications. Clitoria ternatea L. flower has been reported to possess antioxidant and antiglycating properties. Evidence indicates that the extract of Clitoria ternatea L. flower inhibits fructose-induced protein glycation and oxidative damage to bovine serum albumin (BSA). However, there is no evidence to support the inhibitory effect of CTE against MG-mediated protein glycation and oxidative damage to protein and DNA. Therefore, the aim of the present study was to investigate whether C. ternatea flower extract (CTE) prevents MG-induced protein glycation and oxidative DNA damage.

    The formation of fluorescent AGEs in BSA was evaluated using spectrofluorometer. The protein carbonyl and thiol group content were used for detecting protein oxidation. DNA strand breakage in a glycation model comprising of MG, lysine and Cu

    CTE are the underlying mechanisms responsible for the prevention of protein glycation and oxidative DNA damage.

    The study findings suggest that the direct carbonyl trapping ability and the free radical scavenging activity of CTE are the underlying mechanisms responsible for the prevention of protein glycation and oxidative DNA damage.In malaria-endemic countries, prioritizing intervention deployment to areas that need the most attention is crucial to ensure continued progress. Global and national policy makers increasingly rely on epidemiological data and mathematical modelling to help optimize health decisions at the sub-national level. The Demographic and Health Surveys (DHS) Program is a critical data source for understanding subnational malaria prevalence and intervention coverage, which are used for parameterizing country-specific models of malaria transmission. However, data to estimate indicators at finer resolutions are limited, and surveys questions have a narrow scope. Examples from the Nigeria DHS are used to highlight gaps in the current survey design. Proposals are then made for additional questions and expansions to the DHS and Malaria Indicator Survey sampling strategy that would advance the data analyses and modelled estimates that inform national policy recommendations. Collaboration between the DHS Program, national malaria control programmes, the malaria modelling community, and funders is needed to address the highlighted data challenges.

    Chemotherapeutic resistance is the main cause of clinical treatment failure and poor prognosis in triple-negative breast cancer (TNBC). There is no research on chemotherapeutic resistance in TNBC from the perspective of circular RNAs (circRNAs).

    TNBC-related circRNAs were identified based on the GSE101124 dataset. Quantitative reverse transcription PCR was used to detect the expression level of circWAC in TNBC cells and tissues. Then, in vitro and in vivo functional experiments were performed to evaluate the effects of circWAC in TNBC.

    CircWAC was highly expressed in TNBC and was associated with worse TNBC patient prognosis. Subsequently, it was verified that downregulation of circWAC can increase the sensitivity of TNBC cells to paclitaxel (PTX) in vitro and in vivo. The expression of miR-142 was negatively correlated with circWAC in TNBC. The interaction between circWAC and miR-142 in TNBC cells was confirmed by RNA immunoprecipitation assays, luciferase reporter assays, pulldown assays, and fluorescence in situ hybridization. Mechanistically, circWAC acted as a miR-142 sponge to relieve the repressive effect of miR-142 on its target WWP1. In addition, the overall survival of TNBC patients with high expression of miR-142 was significantly better than that of patients with low expression of miR-142, and these results were verified in public databases. MiR-142 regulated the expression of WWP1 and the activity of the PI3K/AKT pathway. It was confirmed that WWP1 is highly expressed in TNBC and that the prognosis of patients with high WWP1 expression is poor.

    CircWAC/miR-142/WWP1 form a competing endogenous RNA (ceRNA) network to regulate PI3K/AKT signaling activity in TNBC cells and affect the chemosensitivity of cells.

    CircWAC/miR-142/WWP1 form a competing endogenous RNA (ceRNA) network to regulate PI3K/AKT signaling activity in TNBC cells and affect the chemosensitivity of cells.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account