-
Rahbek Kearney posted an update 6 months, 1 week ago
The production frequency of a cluster increases with increasing linear energy transfer of radiation. Our results demonstrate that homo-FRET analysis has the potential to discover the qualitative and the quantitative differences of the clusters produced not only by a variety of ionizing radiation but also by other DNA damaging agents.Membrane-active peptides that demonstrate cell-penetrating, antimicrobial or cytotoxic functions are diverse in their amino acid sequences, but share common physicochemical features like short length, amphipathic conformation in membrane environment and high net charge. Nonspecific electrostatic interactions of basic peptide residues with anionic membrane lipids play a crucial role in the initial binding of such peptides to plasma membranes of bacterial and mammalian cells. At the same time, a number of membrane-active peptides functions when they are localized at high concentrations on the lipid membranes. Dissecting the role of electrostatics in this functional peptide conditions is important to understand why the majority of them bear high positive charge. We have studied interaction of EB1 cell-penetrating peptide (charge + 8) with model anionic membranes. The saturation of peptide binding to liposomes that comprises 5%, 10% and 25% of negatively charged lipids (POPC/POPG mixture) was observed. We have found that peptide recharges liposomes and its surface saturating concentration increases with the amount of anionic lipids in a membrane so as a surface charge (bound peptide plus anionic lipids). This observation may be explained with the Gouy-Chapman theory based model with addition of independent effective peptide charges for peptide-peptide and peptide-lipid interactions, as well as steric saturation term. Additionally, in certain conditions, membrane bound peptide leads to liposome aggregation. In some lipid-to-peptide ratio regions disaggregation follows that may indicate an additional slow equilibration process after fast initial peptide binding.Irreversible electroporation (IRE) is a technique for the disruption of localized cells or vesicles by a series of short and high-frequency electric pulses which has been used for tissue ablation and treatment in certain diseases. It is well reported that IRE induces lateral tension in the membranes of giant unilamellar vesicles (GUVs). The GUVs are prepared by a mixture of anionic lipid dioleoylphosphatidylglycerol (DOPG) and neutral lipid dioleoylphosphatidylcholine (DOPC) using the natural swelling method. Here the influence of DOPG mole fraction, XDOPG, on the critical tension of electroporation in GUVs has been investigated in sodium chloride-containing PIPES buffer. The critical tension decreases from 9.0 ± 0.3 to 6.0 ± 0.2 mN/m with the increase of XDOPG from 0.0 to 0.60 in the membranes of GUVs. Hence an increase in XDOPG greatly decreases the mechanical stability of membranes. We develop a theoretical equation that fits the XDOPG dependent normalized critical tension, and obtain a binding constant for the lipid-ion interaction of 0.75 M-1. The decrease in the energy barrier for formation of the nano-size nascent or prepore state, due to the increase in XDOPG, is the main factor explaining the decrease in critical tension of electroporation in vesicles.Estimation of state of saturation with stone-forming salt represents a reliable tool to assess the overall risk. The available methods are based on computer-assisted ab initio calculations. IC-87114 molecular weight Our earlier method URSUS was subsequently substituted by Lithorisk®, a software including visualization of risk profiles. Unfortunately, Lithorisk does not adapt to new versions of Windows® and Macintosh® Apple, neither runs on smartphones or tablets. We propose a novel version of the software which can be directly used online on any device equipped by different operating systems. Upon online connection and after registration, the software is ready for unlimited accesses, in either Italian, English or French. After digiting input variables (urea and creatinine also included) in a fixed dashboard, state of saturation is promptly given. In addition to state of saturation (ß) with calcium oxalate, brushite and uric acid, ß struvite and cystine are available. Both input variables and ß results are graphically depicted as green or red horizontal bars to indicate recommended values. The software was implemented with equations allowing to omit sulphate and ammonium excretion for users with difficult access to these measurements. This simplified version, tested for ßCaOx and ßBsh on 100 urine samples showed close correlation with the full version. The software gives a list of total and free concentrations and soluble complex species distribution. Results can be printed or saved as PDF. So, we propose an easily accessible software to estimate state of saturation usable on any operating system and personal device.The central sulcus is probably one of the most studied folds in the human brain, owing to its clear relationship with primary sensory-motor functional areas. However, due to the difficulty of estimating the trajectories of the U-shape fibres from diffusion MRI, the short structural connectivity of this sulcus remains relatively unknown. In this context, we studied the spatial organization of these U-shape fibres along the central sulcus. Based on high quality diffusion MRI data of 100 right-handed subjects and state-of-the-art pre-processing pipeline, we first define a connectivity space that provides a comprehensive and continuous description of the short-range anatomical connectivity around the central sulcus at both the individual and group levels. We then infer the presence of five major U-shape fibre bundles at the group level in both hemispheres by applying unsupervised clustering in the connectivity space. We propose a quantitative investigation of their position and number of streamlines as a function of hemisphere, sex and functional scores such as handedness and manual dexterity. Main findings of this study are twofold a description of U-shape short-range connectivity along the central sulcus at group level and the evidence of a significant relationship between the position of three hand related U-shape fibre bundles and the handedness score of subjects.