• Bridges Bonner posted an update 6 months, 1 week ago

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.We aimed to firstly determine the 1-year predictive values of lung cancer alarm symptoms in the general population and to analyse the proportion of alarm symptoms reported prior to diagnosis, and secondly analyse how smoking status and reported contact with general practitioners (GPs) regarding lung cancer alarm symptoms influence the predictive values. The study was a nationwide prospective cohort study of 69,060 individuals aged ≥40 years, randomly selected from the Danish population. Using information gathered in a survey regarding symptoms, lifestyle and healthcare-seeking together with registry information on lung cancer diagnoses in the subsequent year, we calculated the predictive values and likelihood ratios of symptoms that might be indicative of lung cancer. Furthermore, we analysed how smoking status and reported contact with GPs regarding the alarm symptoms affected the predictive values. We found that less than half of the patients had reported an alarm symptom six months prior to lung cancer diagnosis. The positive predictive values of the symptoms were generally very low, even for patients reporting GP contact regarding an alarm symptom. The highest predictive values were found for dyspnoea, hoarseness, loss of appetite and for current heavy smokers. The negative predictive values were high, all close to 100%. Given the low positive predictive values, our findings emphasise that diagnostic strategies should not focus on single, specific alarm symptoms, but should perhaps focus on different clusters of symptoms. For patients not experiencing alarm symptoms, the risk of overlooking lung cancer is very low.Magnetic skyrmions are topologically nontrivial particles with a potential application as information elements in future spintronic device architectures. While they are commonly portrayed as two dimensional objects, in reality magnetic skyrmions are thought to exist as elongated, tube-like objects extending through the thickness of the host material. The study of this skyrmion tube state (SkT) is vital for furthering the understanding of skyrmion formation and dynamics for future applications. However, direct experimental imaging of skyrmion tubes has yet to be reported. Here, we demonstrate the real-space observation of skyrmion tubes in a lamella of FeGe using resonant magnetic x-ray imaging and comparative micromagnetic simulations, confirming their extended structure. The formation of these structures at the edge of the sample highlights the importance of confinement and edge effects in the stabilisation of the SkT state, opening the door to further investigation into this unexplored dimension of the skyrmion spin texture.Large Igneous Province eruptions coincide with many major Phanerozoic mass extinctions, suggesting a cause-effect relationship where volcanic degassing triggers global climatic changes. In order to fully understand this relationship, it is necessary to constrain the quantity and type of degassed magmatic volatiles, and to determine the depth of their source and the timing of eruption. Here we present direct evidence of abundant CO2 in basaltic rocks from the end-Triassic Central Atlantic Magmatic Province (CAMP), through investigation of gas exsolution bubbles preserved by melt inclusions. Our results indicate abundance of CO2 and a mantle and/or lower-middle crustal origin for at least part of the degassed carbon. this website The presence of deep carbon is a key control on the emplacement mode of CAMP magmas, favouring rapid eruption pulses (a few centuries each). Our estimates suggest that the amount of CO2 that each CAMP magmatic pulse injected into the end-Triassic atmosphere is comparable to the amount of anthropogenic emissions projected for the 21st century. Such large volumes of volcanic CO2 likely contributed to end-Triassic global warming and ocean acidification.As the human population grows from 7.8 billion to 10 billion over the next 30 years, breeders must do everything possible to create crops that are highly productive and nutritious, while simultaneously having less of an environmental footprint. Rice will play a critical role in meeting this demand and thus, knowledge of the full repertoire of genetic diversity that exists in germplasm banks across the globe is required. To meet this demand, we describe the generation, validation and preliminary analyses of transposable element and long-range structural variation content of 12 near-gap-free reference genome sequences (RefSeqs) from representatives of 12 of 15 subpopulations of cultivated Asian rice. When combined with 4 existing RefSeqs, that represent the 3 remaining rice subpopulations and the largest admixed population, this collection of 16 Platinum Standard RefSeqs (PSRefSeq) can be used as a template to map resequencing data to detect virtually all standing natural variation that exists in the pan-genome of cultivated Asian rice.The spread of traffic jams in urban networks has long been viewed as a complex spatio-temporal phenomenon that often requires computationally intensive microscopic models for analysis purposes. In this study, we present a framework to describe the dynamics of congestion propagation and dissipation of traffic in cities using a simple contagion process, inspired by those used to model infectious disease spread in a population. We introduce two macroscopic characteristics for network traffic dynamics, namely congestion propagation rate β and congestion dissipation rate μ. We describe the dynamics of congestion spread using these new parameters embedded within a system of ordinary differential equations, similar to the well-known susceptible-infected-recovered (SIR) model. The proposed contagion-based dynamics are verified through an empirical multi-city analysis, and can be used to monitor, predict and control the fraction of congested links in the network over time.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Metaplastic breast carcinoma (MBC) is a highly aggressive form of triple-negative cancer (TNBC), defined by the presence of metaplastic components of spindle, squamous, or sarcomatoid histology. The protein profiles underpinning the pathological subtypes and metastatic behavior of MBC are unknown. Using multiplex quantitative tandem mass tag-based proteomics we quantify 5798 proteins in MBC, TNBC, and normal breast from 27 patients. Comparing MBC and TNBC protein profiles we show MBC-specific increases related to epithelial-to-mesenchymal transition and extracellular matrix, and reduced metabolic pathways. MBC subtypes exhibit distinct upregulated profiles, including translation and ribosomal events in spindle, inflammation- and apical junction-related proteins in squamous, and extracellular matrix proteins in sarcomatoid subtypes. Comparison of the proteomes of human spindle MBC with mouse spindle (CCN6 knockout) MBC tumors reveals a shared spindle-specific signature of 17 upregulated proteins involved in translation and 19 downregulated proteins with roles in cell metabolism.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account