• Rohde Koefoed posted an update 6 months, 1 week ago

    RP-18 TLC chromatography was used to evaluate the pharmacokinetic properties (volume of distribution, VD; plasma protein binding, %PPB; the ability to cross the blood-brain barrier expressed as log PS and log BB) of several cosmetic raw materials – sunscreen and preservatives. The majority of these compounds are intended for topical use on skin and their drug-likeness and the ability to cross biological barriers are undesired. The retention parameters RM0, S, PC1 and RM75 % obtained for mobile phases containing six organic modifiers (methanol, acetonitrile, THF, acetone, dioxane, DMF) were used as the sole descriptors or combined with calculated physicochemical properties (PSA, MW, VM) of studied compounds. The chromatographic parameters considered in this study are, generally speaking, good predictors of the compounds’ pharmacokinetic properties VD, %PPB and log PS. RM75 % and the novel parameters derived from it (RM75 %/MW and RM75 %/VM) can be considered time- and cost-effective alternatives to the chromatographic parameters obtained by extrapolation or interpolation methods. In the case of some pharmacokinetic properties investigated in this study additional descriptors (PSA) have a significant influence on the quality of correlations.Lycium fruits have a high content of phenolics as bioactive constituents with various pharmacological effects, but there is a lack of comparative analysis and chemical profiling of phenolics in Lycium fruit varieties. An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MSE) combined with chemometrics was developed to characterize the phenolics in fruits from four Lycium species, including Lycium barbarum L. (LBL), L. chinense Mill. (LCM), L. barbarum var. auranticarpum (LBA) and L. ruthenicun Murr. (LRM). 63 phenolics were identified according to reported tandem mass fragmentation patterns and the UNIFI scientific informatics platform. Nine phenolics (5, 18, 20, 29, 31, 37, 41, 43, 60) were common and predominant components among four types of Lycium fruit. The partial least squares discriminant analysis (PLS-DA) and the orthogonal partial least squares discriminant analysis (OPLS-DA) were analyzed on the basis of a matrix created from 653 sets of data, and 20 Lycium fruits were classified into four groups. Further analysis identified that phenolics profiles were characteristic for each Lycium species, and five markers (13, 29, 31, 35, 99) could be utilized for fruit identification. Subsequently, inhibitory activity against 5α-reductase of phenolic extracts of Lycium fruits showed that LBL extract was the relative better effective, followed by LCM, whereas LBA and LRM showed no activity, which might be associated with the high contents of marker compounds (29, 31, 35, 43, 71, 99) in LBL. These findings will provide guidance for the development of Lycium phenolics with beneficial properties for the prevention and treatment of Benign prostatic hyperplasia (BPH).An optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination in pure and pharmaceutical preparations. The developed method is based on the forming of a white, turbid product as a result of a reaction between the warfarin and semicarbazide which was used as an oxidizing agent. The developed flow-through detector system is semi mechanized, economic in materials consumption, easy to operate and characterized by excellent analytical results. Both developed analytical devices used in two channels flow injection system allow for turbidimetric measurements of warfarin in 0.9-154 μg ml-1 and 123-1600 μg ml-1 ranges of concentration, with limits of detections 0.73 μg ml-1 and 24.66 μg ml-1 for photodetectors 1& 2 respectively. MLN4924 mouse The turbidity measurement procedure for the current flow system offers to conduct 60 tests per hour of the warfarin which is the most needs of quality control analysis in industrial applications. To ensure the analytical usefulness of the flow system, the warfarin has been analyzed in the real samples with a fully acceptable agreement and a correlation between the results offered by the developed flow system and the official method.This study aimed to demonstrate the scientific connotations and compatibility effects of Xiaoyaosan (XYS) based on the theory of “Treating Diseases via Regulating the Liver’s Function” by hepatic metabolomics. XYS was divided into two efficacy groups, i.e. the Shugan (SG) and the Jianpi (JP) groups, according to the strategy of “Efficacy Compositions”. The chronic unpredictable mild stress (CUMS) depression model was constructed. A 1H NMR-based hepatic metabolomics approach coupled with multivariate data (MVD) analysis was performed. Meanwhile, relative distance (RD) and Efficacy Index (EI) were calculated. XYS and its efficacy groups significantly reversed the abnormality of behavior and hepatic metabolomics of depression rats, but to different degrees. The results of ethology and metabolomics showed the same order, i.e. XYS > JP > SG. Two metabolites, i.e. tyrosine and malate, were regulated by all the treatment groups. Four metabolites were significantly regulated only by XYS group. Of note, the results showed the two efficacy groups of XYS exhibited synergistic anti-depression effects, and glutamate, malate and taurine could be the key hepatic metabolites for these synergistic effects. The current study not only complements and consummates the mechanisms of depression and the anti-depression effects of XYS from the perspective of hepatic metabolomics, but also lays a solid foundation for comprehensively and deeply understanding the compatibility effects of XYS against depression, especially from the points of view of compatibility in Traditional Chinese medicine (TCM) theory and synergism in modern medicine theory.

All content contained on CatsWannaBeCats.Com, unless otherwise acknowledged,is the property of CatsWannaBeCats.Com and subject to copyright.

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account